Leveraging Big Data Analytics for Talent Management and Prediction in Human Resources
Downloads
Background. The increasing complexity of workforce management in modern organizations has driven the adoption of innovative tools such as Big Data Analytics (BDA) in human resources (HR). Talent management, encompassing recruitment, retention, and performance evaluation, has become a critical focus for organizations aiming to maintain competitiveness. Big Data Analytics enables HR professionals to identify patterns, predict trends, and make data-driven decisions, enhancing talent management processes. Despite its potential, the application of BDA in HR faces challenges, including data integration, privacy concerns, and skill gaps.
Purpose. This study explores the role of Big Data Analytics in improving talent management and prediction, focusing on its impact on decision-making and organizational outcomes.
Method. A mixed-method research design was employed, incorporating quantitative analysis of HR metrics and qualitative insights from interviews with HR professionals. Data were collected from 15 organizations across diverse industries, analyzing employee performance, recruitment patterns, and turnover rates. Predictive models were developed using machine learning algorithms to forecast talent trends and inform HR strategies.
Results. The findings revealed that BDA significantly improved talent acquisition and retention processes, with a 25% increase in recruitment efficiency and a 30% reduction in turnover rates. Predictive models accurately identified high-potential candidates and flagged at-risk employees, enabling proactive interventions. Challenges related to data privacy and technical expertise were highlighted as areas for improvement.
Conclusion. The study concludes that leveraging Big Data Analytics transforms talent management by enabling evidence-based decision-making and predictive insights. Addressing implementation challenges and investing in skill development will maximize its potential in HR practices.
Abbracciavento, F., Formentin, S., Gualandi, E., Nanni, R., Paoli, A., & Savaresi, S. M. (2020). Modeling and prediction for optimal Human Resources Management. Dalam Findeisen R., Hirche S., Janschek K., & Martin M. (Ed.), IFAC-PapersOnLine (Vol. 53, Nomor 2, hlm. 16996–17001). Elsevier B.V.; Scopus. https://doi.org/10.1016/j.ifacol.2020.12.1250
Achiro, D., Alowo, R., & Nkhonjera, G. (2023). Implementing a Groundwater Monitoring System in the Jukskei River Catchment: A TypeScript and MySQL Approach. Int. Conf. Electr., Comput. Energy Technol., ICECET. International Conference on Electrical, Computer and Energy Technologies, ICECET 2023. Scopus. https://doi.org/10.1109/ICECET58911.2023.10389560
Ahire, P. R., & Hanchate, R. (2022). Predictive and Descriptive Analysis for Healthcare Data. Dalam Handb. Of Intell. Healthc. Analytics: Knowl. Engineering with Big Data Analytics (hlm. 213–231). wiley; Scopus. https://doi.org/10.1002/9781119792550.ch10
Akter, S., Wamba, S. F., Sajib, S., & Hossain, S. (2023). Introduction to the handbook of big data research methods. Dalam Handb. Of Big Data Res. Methods (hlm. 1–10). Edward Elgar Publishing Ltd.; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85165191665&partnerID=40&md5=f2bef16e8bc0cea5bdd622ddcfcc6d94
Al Shamsi, J., & Zahran, H. (2019). Drilling cube—A state of the art & Innovative dynamic well data platform—Monitor wells delivery performance, predict for enhancement opportunity & decision making & to manage well cost more efficiently. Soc. Pet. Eng. - Abu Dhabi Int. Pet. Exhib. Conf., ADIPEC. Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference 2018, ADIPEC 2018. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059988144&partnerID=40&md5=d28b85cacc91380853c94c6b87d51f94
Alaghbari, M. A., Ateeq, A., Alzoraiki, M., Milhem, M., & Beshr, B. A. H. (2024). Integrating Technology in Human Resource Management: Innovations and Advancements for the Modern Workplace. ASU Int. Conf. Emerg. Technol. Sustain. Intell. Syst., ICETSIS, 307–311. Scopus. https://doi.org/10.1109/ICETSIS61505.2024.10459498
Amer, M., Radwhi, A., Ali, A., & Ali, A. (2022). An Integrated Digital Collaborative Work Environment for Drilling. Int. Pet. Technol. Conf., IPTC. International Petroleum Technology Conference, IPTC 2022. Scopus. https://doi.org/10.2523/IPTC-22546-EA
Arora, M., Prakash, A., Mittal, A., & Singh, S. (2021). HR Analytics and Artificial Intelligence-Transforming Human Resource Management. Int. Conf. Decis. Aid Sci. Appl., DASA, 288–293. Scopus. https://doi.org/10.1109/DASA53625.2021.9682325
Bankar, S., & Shukla, K. (2023). Performance management and artificial intelligence: A futuristic conceptual framework. Dalam Contemporary Studies of Risks in Emerging Tech.: Part B (hlm. 341–360). Emerald Group Publishing Ltd.; Scopus. https://doi.org/10.1108/978-1-80455-566-820231019
Brito, A., & Sousa, M. (2023). HR Analytics in the Commercial Aviation Sector: A Literature Review. Dalam Rich M. (Ed.), Proc. Eur. Conf. Manag. Leadersh. Gov. (Vol. 2023-November, hlm. 512–519). Academic Conferences and Publishing International Limited; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180554950&partnerID=40&md5=5b70b60711390c6570ea4148742a62e6
Cadei, L., Rossi, G., Lancia, L., Loffreno, D., Corneo, A., Milana, D., Montini, M., Purlalli, E., Fier, P., Carducci, F., & Nizzolo, R. (2022). Digital Lighthouse: A Scalable Model for Digital Transformation in Oil & Gas. Soc. Pet. Eng. - SPE Conf. Oman Pet. Energy Show, OPES. Society of Petroleum Engineers - SPE Conference at Oman Petroleum and Energy Show, OPES 2022. Scopus. https://doi.org/10.2118/200149-MS
Chang, C.-H., Hsu, T.-C., Chu, W. C.-C., Hung, C.-L., & Chiu, P.-F. (2021). A smart service warehousing platform supporting big data deep learning modeling analysis. Journal of Internet Technology, 22(2), 483–489. Scopus. https://doi.org/10.3966/160792642021032202022
Chung, D., Yun, J., Lee, J., & Jeon, Y. (2023). Predictive model of employee attrition based on stacking ensemble learning. Expert Systems with Applications, 215. Scopus. https://doi.org/10.1016/j.eswa.2022.119364
Didas, M., Chali, F., Elisa, N., & Matogoro, J. (2023). Requirements for Building a Business-Driven Reference Architecture for Implementation of Big Data Analytics by Public Sector Organizations: A Case Study of Uganda. Int. Conf. Adv. Artif. Intell. African Context, AAIAC. 1st International Conference on the Advancements of Artificial Intelligence in African Context, AAIAC 2023. Scopus. https://doi.org/10.1109/AAIAC60008.2023.10465496
Ekawati, A. D. (2019). Predictive analytics in employee churn: A systematic literature review. Journal of Management Information and Decision Sciences, 22(4), 387–397. Scopus.
Fayoumi, A. G., & Hajjar, A. F. (2020). Advanced learning analytics in academic education: Academic performance forecasting based on an artificial neural network. International Journal on Semantic Web and Information Systems, 16(3), 70–87. Scopus. https://doi.org/10.4018/IJSWIS.2020070105
Gianquintieri, L., Brovelli, M. A., Pagliosa, A., Dassi, G., Brambilla, P. M., Bonora, R., Sechi, G. M., & Caiani, E. G. (2022). Generating High-Granularity COVID-19 Territorial Early Alerts Using Emergency Medical Services and Machine Learning. International Journal of Environmental Research and Public Health, 19(15). Scopus. https://doi.org/10.3390/ijerph19159012
Gujanal, P. U., & Hiremath, G. (2023). Performance management and artificial intelligence: A conceptual framework on future role. Dalam Rao K.V.S. & Rao P.R.K. (Ed.), AIP Conf. Proc. (Vol. 2796, Nomor 1). American Institute of Physics Inc.; Scopus. https://doi.org/10.1063/5.0149028
Kamble, S. S., Mor, R. S., & Belhadi, A. (2023). Big Data Analytics for Supply Chain Transformation: A Systematic Literature Review Using SCOR Framework. Dalam EAI/Springer Inno. Comm. Comp. (hlm. 1–50). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-19711-6_1
Karwehl, L. J., & Kauffeld, S. (2021). Traditional and new ways in competence management: Application of HR analytics in competence management. Gruppe. Interaktion. Organisation. Zeitschrift Fur Angewandte Organisationspsychologie, 52(1), 7–24. Scopus. https://doi.org/10.1007/s11612-021-00548-y
Loshcheva, Z. A., Pimenov, A. A., Bildanov, R. R., Ganiev, T. I., Dekhtyarev, V. A., Magdeev, M. S., Khisanov, R. M., & Shaykhutdinov, D. K. (2024). Modern solutions for oil fields at a late stage of development. Neftyanoe Khozyaystvo - Oil Industry, 2024(7), 32–38. Scopus. https://doi.org/10.24887/0028-2448-2024-7-32-38
Mahajan, P. C., Kiwelekar, A. W., Netak, L. D., & Ghodake, A. B. (2022). Predicting Expected Time of Arrival of Shipments Through Multiple Linear Regression. Dalam Kumar A., Senatore S., & Gunjan V.K. (Ed.), Lect. Notes Electr. Eng. (Vol. 783, hlm. 343–350). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-16-3690-5_30
Mayo, C. S., Mierzwa, M., Moran, J. M., Matuszak, M. M., Wilkie, J., Sun, G., Yao, J., Weyburn, G., Anderson, C. J., Owen, D., & Rao, A. (2020). Combination of a Big Data Analytics Resource System With an Artificial Intelligence Algorithm to Identify Clinically Actionable Radiation Dose Thresholds for Dysphagia in Head and Neck Patients. Advances in Radiation Oncology, 5(6), 1296–1304. Scopus. https://doi.org/10.1016/j.adro.2019.12.007
Mishra, P. C., & Mishra, P. K. (2023). Challenges and Opportunities of Big Data Analytics for Human Resource Management in Mining and Metal Industries. Journal of Mines, Metals and Fuels, 71(10), 1747–1753. Scopus. https://doi.org/10.18311/jmmf/2023/35858
Polshettiwar, S., Kachhi, M., Dargude, S., Jagdale, S., Bhiote, S., & Polshettiwar, D. (2024). Next Frontier in Pharma Revolution: Synergy of AI, Big Data, and Blockchain Technology. Pharma Times, 56(9), 21–29. Scopus.
Rahate, V., Mohanty, V., Arora, A., Bagul, D. B., Disawal, V., & Kulkarni, A. (2023). Analysis of Human Resource Predictive Models Utilizing Machine Learning. Int. Conf. Commun., Secur. Artif. Intell., ICCSAI, 145–150. Scopus. https://doi.org/10.1109/ICCSAI59793.2023.10421177
Ramos, M. I., Cubillas, J. J., Jurado, J. M., Lopez, W., Feito, F. R., Quero, M., & Gonzalez, J. M. (2019). Prediction of the increase in health services demand based on the analysis of reasons of calls received by a customer relationship management. International Journal of Health Planning and Management, 34(2), e1215–e1222. Scopus. https://doi.org/10.1002/hpm.2763
Shrivastava, S., & Dhaigude, A. S. (2022). Prime Data Tech Pvt. Ltd: Resolving Employee Recruitment Dilemma using HR Analytics. Communications of the Association for Information Systems, 50(1). Scopus. https://doi.org/10.17705/1CAIS.05027
Sienkiewicz, L. (2024). Algorithmic Human Resources Management. Dalam HRM 5.0: Unpacking the Digitalisation of Hum. Resour. Management (hlm. 57–86). Springer Nature; Scopus. https://doi.org/10.1007/978-3-031-58912-6_4
Umer, R., Mathrani, A., Susnjak, T., & Lim, S. (2019). Mining activity log data to predict student’s outcome in a course. ACM Int. Conf. Proc. Ser., 52–58. Scopus. https://doi.org/10.1145/3322134.3322140
Wang, Q., Westlund, V., Johansson, J., & Lindgren, M. (2021). Smart Sewage Water Management and Data Forecast. Workshop Swed. Artif. Intell. Soc., SAIS. 33rd Workshop of the Swedish Artificial Intelligence Society, SAIS 2021. Scopus. https://doi.org/10.1109/SAIS53221.2021.9484017
Yaseen S.G. (Ed.). (2022). 17th Annual Scientific International Conference for Business on Digital Economy and Business Analytics, SICB 2021. Studies in Computational Intelligence, 1010. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140462433&partnerID=40&md5=a315a722f37ba19da1288d411a1f52fe
Yuan, J. (2021). Research on Employee Turnover Prediction Based on Machine Learning Algorithms. Int. Conf. Artif. Intell. Big Data, ICAIBD, 114–120. Scopus. https://doi.org/10.1109/ICAIBD51990.2021.9459098
Copyright (c) 2024 Ahmad Hariri, Rachmat Prasetio, Abdullah Al-Shammari, Sevda Kara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.