Development of a Nano Particle Vaccine to Prevent Zika Virus Infection
Abstract
Zika virus is a mosquito-borne flavivirus that causes severe birth defects in newborns. Effective preventive measures are urgently needed due to the global spread of the virus. To develop a nanoparticle-based vaccine to prevent Zika virus infection by enhancing immune responses and ensuring safety. A multidisciplinary approach combining virology, immunology, and nanotechnology was used. Laboratory animals and human volunteers were included in the study. The nanoparticle vaccine was characterized using DLS and electron microscopy, and its immunogenicity was tested using ELISA and flow cytometry. Preclinical and clinical trials were conducted to assess the vaccine's efficacy and safety. The nanoparticle vaccine induced strong and long-lasting immune responses, reducing Zika virus infection rates by 85% in mice and 80% in non-human primates. The vaccine showed high titers of neutralizing antibodies and significant cellular immune responses without adverse effects. The nanoparticle vaccine demonstrated high efficacy and safety in preventing Zika virus infection, providing a promising new approach to vaccine development. Further clinical trials are needed to validate these findings and optimize vaccine production for widespread use.
Full text article
References
Albuquerque De Oliveira Mendes, L., Ponciano, C. S., Depieri Cataneo, A. H., Wowk, P. F., Bordignon, J., Silva, H., Vieira De Almeida, M., & Ávila, E. P. (2020). The anti-Zika virus and anti-tumoral activity of the citrus flavanone lipophilic naringenin-based compounds. Chemico-Biological Interactions, 331, 109218. https://doi.org/10.1016/j.cbi.2020.109218
Ali, A., Islam, S., Khan, M. R., Rasheed, S., Allehiany, F. M., Baili, J., Khan, M. A., & Ahmad, H. (2022). Dynamics of a fractional order Zika virus model with mutant. Alexandria Engineering Journal, 61(6), 4821–4836. https://doi.org/10.1016/j.aej.2021.10.031
Alzahrani, E. O., Ahmad, W., Altaf Khan, M., & Malebary, S. J. (2021). Optimal Control Strategies of Zika Virus Model with Mutant. Communications in Nonlinear Science and Numerical Simulation, 93, 105532. https://doi.org/10.1016/j.cnsns.2020.105532
Auriti, C., De Rose, D. U., Santisi, A., Martini, L., Piersigilli, F., Bersani, I., Ronchetti, M. P., & Caforio, L. (2021). Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1867(10), 166198. https://doi.org/10.1016/j.bbadis.2021.166198
Baltina, L. A., Lai, H.-C., Liu, Y.-C., Huang, S.-H., Hour, M.-J., Baltina, L. A., Nugumanov, T. R., Borisevich, S. S., Khalilov, L. M., Petrova, S. F., Khursan, S. L., & Lin, C.-W. (2021). Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorganic & Medicinal Chemistry, 41, 116204. https://doi.org/10.1016/j.bmc.2021.116204
Begum, R., Tunç, O., Khan, H., Gulzar, H., & Khan, A. (2021). A fractional order Zika virus model with Mittag–Leffler kernel. Chaos, Solitons & Fractals, 146, 110898. https://doi.org/10.1016/j.chaos.2021.110898
Braun, N. J., Quek, J. P., Huber, S., Kouretova, J., Rogge, D., Lang?Henkel, H., Cheong, E. Z. K., Chew, B. L. A., Heine, A., Luo, D., & Steinmetzer, T. (2020). Structure?Based Macrocyclization of Substrate Analogue NS2B?NS3 Protease Inhibitors of Zika, West Nile and Dengue viruses. ChemMedChem, 15(15), 1439–1452. https://doi.org/10.1002/cmdc.202000237
Chandra, F., Lee, W. L., Armas, F., Leifels, M., Gu, X., Chen, H., Wuertz, S., Alm, E. J., & Thompson, J. (2021). Persistence of Dengue (Serotypes 2 and 3), Zika, Yellow Fever, and Murine Hepatitis Virus RNA in Untreated Wastewater. Environmental Science & Technology Letters, 8(9), 785–791. https://doi.org/10.1021/acs.estlett.1c00517
Chen, Y., Li, Y., Wang, X., & Zou, P. (2020). Montelukast, an Anti-asthmatic Drug, Inhibits Zika Virus Infection by Disrupting Viral Integrity. Frontiers in Microbiology, 10, 3079. https://doi.org/10.3389/fmicb.2019.03079
Chen, Y., Li, Z., Pan, P., Lao, Z., Xu, J., Li, Z., Zhan, S., Liu, X., Wu, Y., Wang, W., & Li, G. (2021). Cinnamic acid inhibits Zika virus by inhibiting RdRp activity. Antiviral Research, 192, 105117. https://doi.org/10.1016/j.antiviral.2021.105117
Chiu, C.-F., Chu, L.-W., Liao, I.-C., Simanjuntak, Y., Lin, Y.-L., Juan, C.-C., & Ping, Y.-H. (2020). The Mechanism of the Zika Virus Crossing the Placental Barrier and the Blood-Brain Barrier. Frontiers in Microbiology, 11, 214. https://doi.org/10.3389/fmicb.2020.00214
Ferreira, P. G., Tesla, B., Horácio, E. C. A., Nahum, L. A., Brindley, M. A., De Oliveira Mendes, T. A., & Murdock, C. C. (2020). Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito–Zika Virus Interactions. Frontiers in Microbiology, 11, 901. https://doi.org/10.3389/fmicb.2020.00901
García, C. C., Vázquez, C. A., Giovannoni, F., Russo, C. A., Cordo, S. M., Alaimo, A., & Damonte, E. B. (2020). Cellular Organelles Reorganization During Zika Virus Infection of Human Cells. Frontiers in Microbiology, 11, 1558. https://doi.org/10.3389/fmicb.2020.01558
Giraldo, M. I., Gonzalez-Orozco, M., & Rajsbaum, R. (2023). Pathogenesis of Zika Virus Infection. Annual Review of Pathology: Mechanisms of Disease, 18(1), 181–203. https://doi.org/10.1146/annurev-pathmechdis-031521-034739
Gloria-Soria, A., Payne, A. F., Bialosuknia, S. M., Stout, J., Mathias, N., Eastwood, G., Ciota, A. T., Kramer, L. D., & Armstrong, P. M. (2020). Vector Competence of Aedes albopictus Populations from the Northeastern United States for Chikungunya, Dengue, and Zika Viruses. The American Journal of Tropical Medicine and Hygiene. https://doi.org/10.4269/ajtmh.20-0874
Hsu, Y.-P., Li, N.-S., Chen, Y.-T., Pang, H.-H., Wei, K.-C., & Yang, H.-W. (2020). A serological point-of-care test for Zika virus detection and infection surveillance using an enzyme-free vial immunosensor with a smartphone. Biosensors and Bioelectronics, 151, 111960. https://doi.org/10.1016/j.bios.2019.111960
Ka, S., Merindol, N., Sow, A. A., Singh, A., Landelouci, K., Plourde, M. B., Pépin, G., Masi, M., Di Lecce, R., Evidente, A., Seck, M., Berthoux, L., Chatel-Chaix, L., & Desgagné-Penix, I. (2021). Amaryllidaceae Alkaloid Cherylline Inhibits the Replication of Dengue and Zika Viruses. Antimicrobial Agents and Chemotherapy, 65(9), e00398-21. https://doi.org/10.1128/AAC.00398-21
Katzelnick, L. C., Bos, S., & Harris, E. (2020). Protective and enhancing interactions among dengue viruses 1-4 and Zika virus. Current Opinion in Virology, 43, 59–70. https://doi.org/10.1016/j.coviro.2020.08.006
Kumar, D., Sharma, N., Aarthy, M., Singh, S. K., & Giri, R. (2020). Mechanistic Insights into Zika Virus NS3 Helicase Inhibition by Epigallocatechin-3-Gallate. ACS Omega, 5(19), 11217–11226. https://doi.org/10.1021/acsomega.0c01353
Li, A., Wang, W., Wang, Y., Chen, K., Xiao, F., Hu, D., Hui, L., Liu, W., Feng, Y., Li, G., Tan, Q., Liu, Y., Wu, K., & Wu, J. (2020). NS5 Conservative Site Is Required for Zika Virus to Restrict the RIG-I Signaling. Frontiers in Immunology, 11, 51. https://doi.org/10.3389/fimmu.2020.00051
Li, F., Lee, E. M., Sun, X., Wang, D., Tang, H., & Zhou, G.-C. (2020). Design, synthesis and discovery of andrographolide derivatives against Zika virus infection. European Journal of Medicinal Chemistry, 187, 111925. https://doi.org/10.1016/j.ejmech.2019.111925
Li, M., Zhang, D., Li, C., Zheng, Z., Fu, M., Ni, F., Liu, Y., Du, T., Wang, H., Griffin, G. E., Zhang, M., & Hu, Q. (2020). Characterization of Zika Virus Endocytic Pathways in Human Glioblastoma Cells. Frontiers in Microbiology, 11, 242. https://doi.org/10.3389/fmicb.2020.00242
Li, Z., Xu, J., Lang, Y., Fan, X., Kuo, L., D’Brant, L., Hu, S., Samrat, S. K., Trudeau, N., Tharappel, A. M., Rugenstein, N., Koetzner, C. A., Zhang, J., Chen, H., Kramer, L. D., Butler, D., Zhang, Q.-Y., Zhou, J., & Li, H. (2020). JMX0207, a Niclosamide Derivative with Improved Pharmacokinetics, Suppresses Zika Virus Infection Both In Vitro and In Vivo. ACS Infectious Diseases, 6(10), 2616–2628. https://doi.org/10.1021/acsinfecdis.0c00217
Lima, C. S., Mottin, M., De Assis, L. R., Mesquita, N. C. D. M. R., Sousa, B. K. D. P., Coimbra, L. D., Santos, K. B.-, Zorn, K. M., Guido, R. V. C., Ekins, S., Marques, R. E., Proença-Modena, J. L., Oliva, G., Andrade, C. H., & Regasini, L. O. (2021). Flavonoids from Pterogyne nitens as Zika virus NS2B-NS3 protease inhibitors. Bioorganic Chemistry, 109, 104719. https://doi.org/10.1016/j.bioorg.2021.104719
Martínez-Rojas, P. P., Quiroz-García, E., Monroy-Martínez, V., Agredano-Moreno, L. T., Jiménez-García, L. F., & Ruiz-Ordaz, B. H. (2020). Participation of Extracellular Vesicles from Zika-Virus-Infected Mosquito Cells in the Modification of Naïve Cells’ Behavior by Mediating Cell-to-Cell Transmission of Viral Elements. Cells, 9(1), 123. https://doi.org/10.3390/cells9010123
Muirhead, A., Zhu, K., Brown, J., Basu, M., Brinton, M. A., Costa, F., Hayat, M. J., & Stauber, C. E. (2020). Zika Virus RNA Persistence in Sewage. Environmental Science & Technology Letters, 7(9), 659–664. https://doi.org/10.1021/acs.estlett.0c00535
Onyango, M. G., Bialosuknia, S. M., Payne, A. F., Mathias, N., Kuo, L., Vigneron, A., DeGennaro, M., Ciota, A. T., & Kramer, L. D. (2020). Increased temperatures reduce the vectorial capacity of Aedes mosquitoes for Zika virus. Emerging Microbes & Infections, 9(1), 67–77. https://doi.org/10.1080/22221751.2019.1707125
Ophir, Y., & Jamieson, K. H. (2020). The Effects of Zika Virus Risk Coverage on Familiarity, Knowledge and Behavior in the U.S. – A Time Series Analysis Combining Content Analysis and a Nationally Representative Survey. Health Communication, 35(1), 35–45. https://doi.org/10.1080/10410236.2018.1536958
Quintana, V. M., Selisko, B., Brunetti, J. E., Eydoux, C., Guillemot, J. C., Canard, B., Damonte, E. B., Julander, J. G., & Castilla, V. (2020). Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antiviral Research, 176, 104749. https://doi.org/10.1016/j.antiviral.2020.104749
Rastogi, M., & Singh, S. K. (2020). Zika virus NS1 affects the junctional integrity of human brain microvascular endothelial cells. Biochimie, 176, 52–61. https://doi.org/10.1016/j.biochi.2020.06.011
Schrauf, S., Tschismarov, R., Tauber, E., & Ramsauer, K. (2020). Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Frontiers in Immunology, 11, 592. https://doi.org/10.3389/fimmu.2020.00592
Seok, Y., Batule, B. S., & Kim, M.-G. (2020). Lab-on-paper for all-in-one molecular diagnostics (LAMDA) of zika, dengue, and chikungunya virus from human serum. Biosensors and Bioelectronics, 165, 112400. https://doi.org/10.1016/j.bios.2020.112400
Seong, R.-K., Lee, J. K., Cho, G. J., Kumar, M., & Shin, O. S. (2020). mRNA and miRNA profiling of Zika virus-infected human umbilical cord mesenchymal stem cells identifies miR-142-5p as an antiviral factor. Emerging Microbes & Infections, 9(1), 2061–2075. https://doi.org/10.1080/22221751.2020.1821581
Teixeira, F. M. E., Pietrobon, A. J., Oliveira, L. D. M., Oliveira, L. M. D. S., & Sato, M. N. (2020). Maternal-Fetal Interplay in Zika Virus Infection and Adverse Perinatal Outcomes. Frontiers in Immunology, 11, 175. https://doi.org/10.3389/fimmu.2020.00175
Trus, I., Udenze, D., Berube, N., Wheler, C., Martel, M.-J., Gerdts, V., & Karniychuk, U. (2020). CpG-Recoding in Zika Virus Genome Causes Host-Age-Dependent Attenuation of Infection With Protection Against Lethal Heterologous Challenge in Mice. Frontiers in Immunology, 10, 3077. https://doi.org/10.3389/fimmu.2019.03077
Turpin, J., Frumence, E., Harrabi, W., Haddad, J. G., El Kalamouni, C., Desprès, P., Krejbich-Trotot, P., & Viranaïcken, W. (2020). Zika virus subversion of chaperone GRP78/BiP expression in A549 cells during UPR activation. Biochimie, 175, 99–105. https://doi.org/10.1016/j.biochi.2020.05.011
Voss, S., & Nitsche, C. (2020). Inhibitors of the Zika virus protease NS2B-NS3. Bioorganic & Medicinal Chemistry Letters, 30(5), 126965. https://doi.org/10.1016/j.bmcl.2020.126965
Wen, C., Yu, Y., Gao, C., Qi, X., Cardona, C. J., & Xing, Z. (2021). RIPK3-Dependent Necroptosis Is Induced and Restricts Viral Replication in Human Astrocytes Infected With Zika Virus. Frontiers in Cellular and Infection Microbiology, 11, 637710. https://doi.org/10.3389/fcimb.2021.637710
Yang, S., Gorshkov, K., Lee, E. M., Xu, M., Cheng, Y.-S., Sun, N., Soheilian, F., De Val, N., Ming, G., Song, H., Tang, H., & Zheng, W. (2020). Zika Virus-Induced Neuronal Apoptosis via Increased Mitochondrial Fragmentation. Frontiers in Microbiology, 11, 598203. https://doi.org/10.3389/fmicb.2020.598203
Zaidi, M. B., Cedillo-Barron, L., González Y Almeida, M. E., Garcia-Cordero, J., Campos, F. D., Namorado-Tonix, K., & Perez, F. (2020). Serological tests reveal significant cross-reactive human antibody responses to Zika and Dengue viruses in the Mexican population. Acta Tropica, 201, 105201. https://doi.org/10.1016/j.actatropica.2019.105201
Zhao, Z., Li, Q., Ashraf, U., Yang, M., Zhu, W., Gu, J., Chen, Z., Gu, C., Si, Y., Cao, S., & Ye, J. (2022). Zika virus causes placental pyroptosis and associated adverse fetal outcomes by activating GSDME. eLife, 11, e73792. https://doi.org/10.7554/eLife.73792
Zheng, J., Yue, R., Yang, R., Wu, Q., Wu, Y., Huang, M., Chen, X., Lin, W., Huang, J., Chen, X., Jiang, Y., Yang, B., & Liao, Y. (2022). Visualization of Zika Virus Infection via a Light-Initiated Bio-Orthogonal Cycloaddition Labeling Strategy. Frontiers in Bioengineering and Biotechnology, 10, 940511. https://doi.org/10.3389/fbioe.2022.940511
Zou, M., Liu, H., Li, J., Yao, X., Chen, Y., Ke, C., & Liu, S. (2020). Structure-activity relationship of flavonoid bifunctional inhibitors against Zika virus infection. Biochemical Pharmacology, 177, 113962. https://doi.org/10.1016/j.bcp.2020.113962
Authors
Copyright (c) 2025 Ethan Tan, Lucas Wong, Ryan Teo, Muntasir Muntasir

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.