Design of Short Peptides as Targeted Protein Inhibitors for Alzheimer’s Disease

Miksusanti Miksusanti (1), Faisal Razak (2), Nurul Huda (3), Muntasir Muntasir (4)
(1) Universiti Sriwijaya, Indonesia,
(2) Universiti Malaya, Malaysia,
(3) Universiti Utara, Malaysia,
(4) Universitas Nusa Cendana, Indonesia

Abstract

Alzheimer's disease is a neurodegenerative disorder marked by cognitive decline and memory loss, primarily caused by the aggregation of amyloid-beta and tau proteins in the brain. Conventional treatments offer limited benefits, emphasizing the need for new therapeutic strategies. To design and evaluate short peptides as targeted protein inhibitors to prevent the aggregation of amyloid-beta and tau proteins, aiming to halt or reverse the progression of Alzheimer's disease. The study employed computational modeling to design peptides, followed by in vitro assays for initial screening, and in vivo tests using transgenic mouse models to assess therapeutic efficacy and safety. Techniques included mass spectrometry, HPLC, and behavioral tests for cognitive function. Designed peptides demonstrated high binding affinity and specificity for amyloid-beta and tau proteins, reducing aggregation by 70% in vitro. In vivo studies showed significant reductions in amyloid plaques and tau tangles, with improved cognitive performance in treated mice. Peptides effectively crossed the blood-brain barrier and accumulated in target brain regions. The findings support the potential of short peptides as a novel therapeutic approach for Alzheimer's disease, warranting further research and clinical trials to validate their efficacy and safety in human subjects.

Full text article

Generated from XML file

References

Aicher, A., Sindrilaru, A., Crisan, D., Thaiss, W., Steinacker, J., Beer, M., Wiegel, T., Scharffetter-Kochanek, K., Beer, A. J., & Prasad, V. (2022). Short-Interval, Low-Dose Peptide Receptor Radionuclide Therapy in Combination with PD-1 Checkpoint Immunotherapy Induces Remission in Immunocompromised Patients with Metastatic Merkel Cell Carcinoma. Pharmaceutics, 14(7), 1466. https://doi.org/10.3390/pharmaceutics14071466

Apostolopoulos, V., Bojarska, J., Chai, T.-T., Elnagdy, S., Kaczmarek, K., Matsoukas, J., New, R., Parang, K., Lopez, O. P., Parhiz, H., Perera, C. O., Pickholz, M., Remko, M., Saviano, M., Skwarczynski, M., Tang, Y., Wolf, W. M., Yoshiya, T., Zabrocki, J., … Toth, I. (2021). A Global Review on Short Peptides: Frontiers and Perspectives. Molecules, 26(2), 430. https://doi.org/10.3390/molecules26020430

Apostolopoulos, V., Bojarska, J., Chai, T.-T., Feehan, J., Kaczmarek, K., Matsoukas, J. M., Paredes Lopez, O., Saviano, M., Skwarczynski, M., Smith-Carpenter, J., Venanzi, M., Wolf, W. M., Zielenkiewicz, P., & Ziora, Z. M. (2022). New Advances in Short Peptides: Looking Forward. Molecules, 27(11), 3635. https://doi.org/10.3390/molecules27113635

Argudo, P. G., & Giner-Casares, J. J. (2021). Folding and self-assembly of short intrinsically disordered peptides and protein regions. Nanoscale Advances, 3(7), 1789–1812. https://doi.org/10.1039/D0NA00941E

Arul, A., Sivagnanam, S., Dey, A., Mukherjee, O., Ghosh, S., & Das, P. (2020). The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings. RSC Advances, 10(23), 13420–13429. https://doi.org/10.1039/C9RA10018K

Cassidy, L., Kaulich, P. T., Maaß, S., Bartel, J., Becher, D., & Tholey, A. (2021). Bottom?up and top?down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame?encoded peptides. PROTEOMICS, 21(23–24), 2100008. https://doi.org/10.1002/pmic.202100008

Cerrato, A., Aita, S. E., Capriotti, A. L., Cavaliere, C., Montone, C. M., Laganà, A., & Piovesana, S. (2020). A new opening for the tricky untargeted investigation of natural and modified short peptides. Talanta, 219, 121262. https://doi.org/10.1016/j.talanta.2020.121262

Chowdhuri, S., Ghosh, M., Adler-Abramovich, L., & Das, D. (2021). The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer Hydrogels. Pharmaceutics, 13(10), 1602. https://doi.org/10.3390/pharmaceutics13101602

Fu, W., Farhadi Sabet, Z., Liu, J., You, M., Zhou, H., Wang, Y., Gao, Y., Li, J., Ma, X., & Chen, C. (2020). Metal ions modulation of the self-assembly of short peptide conjugated nonsteroidal anti-inflammatory drugs (NSAIDs). Nanoscale, 12(14), 7960–7968. https://doi.org/10.1039/D0NR00572J

Gila-Vilchez, C., Mañas-Torres, M. C., González-Vera, J. A., Franco-Montalban, F., Tamayo, J. A., Conejero-Lara, F., Cuerva, J. M., Lopez-Lopez, M. T., Orte, A., & Álvarez De Cienfuegos, L. (2021). Insights into the co-assemblies formed by different aromatic short-peptide amphiphiles. Polymer Chemistry, 12(47), 6832–6845. https://doi.org/10.1039/D1PY01366A

Han, X., Wang, Y., Zhang, P., Zhu, M., Li, L., Mao, X., Sha, X., & Li, L. (2021). Kazak faecal microbiota transplantation induces short-chain fatty acids that promote glucagon-like peptide-1 secretion by regulating gut microbiota in db/db mice. Pharmaceutical Biology, 59(1), 1075–1085. https://doi.org/10.1080/13880209.2021.1954667

He, X., Zhou, S., Quinn, B., Jahagirdar, D., Ortega, J., Abrams, S. I., & Lovell, J. F. (2021). HPV?Associated Tumor Eradication by Vaccination with Synthetic Short Peptides and Particle?Forming Liposomes. Small, 17(11), 2007165. https://doi.org/10.1002/smll.202007165

Jain, R., & Roy, S. (2020). Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly. Materials Science and Engineering: C, 108, 110483. https://doi.org/10.1016/j.msec.2019.110483

Kaulich, P. T., Cassidy, L., Weidenbach, K., Schmitz, R. A., & Tholey, A. (2020). Complementarity of Different SDS?PAGE Gel Staining Methods for the Identification of Short Open Reading Frame?Encoded Peptides. PROTEOMICS, 20(19–20), 2000084. https://doi.org/10.1002/pmic.202000084

Koehbach, J., Gani, J., Hilpert, K., & Craik, D. J. (2021). Comparison of a Short Linear Antimicrobial Peptide with Its Disulfide-Cyclized and Cyclotide-Grafted Variants against Clinically Relevant Pathogens. Microorganisms, 9(6), 1249. https://doi.org/10.3390/microorganisms9061249

La Manna, S., Florio, D., Panzetta, V., Roviello, V., Netti, P. A., Di Natale, C., & Marasco, D. (2022). Hydrogelation tunability of bioinspired short peptides. Soft Matter, 18(44), 8418–8426. https://doi.org/10.1039/D2SM01385A

Mañas-Torres, M. C., Gila-Vilchez, C., González-Vera, J. A., Conejero-Lara, F., Blanco, V., Cuerva, J. M., Lopez-Lopez, M. T., Orte, A., & Álvarez De Cienfuegos, L. (2021). In situ real-time monitoring of the mechanism of self-assembly of short peptide supramolecular polymers. Materials Chemistry Frontiers, 5(14), 5452–5462. https://doi.org/10.1039/D1QM00477H

Manju Devi, S., Raj, N., & Sashidhar, R. B. (2021). Efficacy of short-synthetic antifungal peptides on pathogenic Aspergillus flavus. Pesticide Biochemistry and Physiology, 174, 104810. https://doi.org/10.1016/j.pestbp.2021.104810

Mehra, R. R., Basu, A., Christman, R. M., Harjit, J., Mishra, A. K., Tiwari, A. K., & DuttKonar, A. (2020). Mechanoresponsive, proteolytically stable and biocompatible supergelators from ultra short enantiomeric peptides with sustained drug release propensity. New Journal of Chemistry, 44(16), 6346–6354. https://doi.org/10.1039/D0NJ00102C

Pal, V. K., & Roy, S. (2022). Cooperative Metal Ion Coordination to the Short Self?Assembling Peptide Promotes Hydrogelation and Cellular Proliferation. Macromolecular Bioscience, 22(5), 2100462. config.json[1].gz

Perlikowska, R. (2021). Whether short peptides are good candidates for future neuroprotective therapeutics? Peptides, 140, 170528. https://doi.org/10.1016/j.peptides.2021.170528

Pizzoferrato, M., Puca, P., Ennas, S., Cammarota, G., & Guidi, L. (2022). Glucagon-like peptide-2 analogues for Crohn’s disease patients with short bowel syndrome and intestinal failure. World Journal of Gastroenterology, 28(44), 6258–6270. https://doi.org/10.3748/wjg.v28.i44.6258

Rahman, N., Islam, M. M., Unzai, S., Miura, S., & Kuroda, Y. (2020). Nanometer-Sized Aggregates Generated Using Short Solubility Controlling Peptide Tags Do Increase the In Vivo Immunogenicity of a Nonimmunogenic Protein. Molecular Pharmaceutics, 17(5), 1629–1637. https://doi.org/10.1021/acs.molpharmaceut.0c00071

Restu, W. K., Yamamoto, S., Nishida, Y., Ienaga, H., Aoi, T., & Maruyama, T. (2020). Hydrogel formation by short D-peptide for cell-culture scaffolds. Materials Science and Engineering: C, 111, 110746. https://doi.org/10.1016/j.msec.2020.110746

Seo, J.-K., Kim, D.-G., Lee, J.-E., Park, K.-S., Lee, I.-A., Lee, K.-Y., Kim, Y.-O., & Nam, B.-H. (2021). Antimicrobial Activity and Action Mechanisms of Arg-Rich Short Analog Peptides Designed from the C-Terminal Loop Region of American Oyster Defensin (AOD). Marine Drugs, 19(8), 451. https://doi.org/10.3390/md19080451

Singh, R., Mishra, N. K., Singh, N., Rawal, P., Gupta, P., & Joshi, K. B. (2020). Transition metal ions induced secondary structural transformation in a hydrophobized short peptide amphiphile. New Journal of Chemistry, 44(22), 9255–9263. https://doi.org/10.1039/D0NJ01501F

Stefani, D., Guo, C., Ornago, L., Cabosart, D., El Abbassi, M., Sheves, M., Cahen, D., & Van Der Zant, H. S. J. (2021). Conformation-dependent charge transport through short peptides. Nanoscale, 13(5), 3002–3009. https://doi.org/10.1039/D0NR08556A

Sugiura, T., Kanada, T., Mori, D., Sakai, H., Shibata, A., Kitamura, Y., & Ikeda, M. (2020). Chemical stimulus-responsive supramolecular hydrogel formation and shrinkage of a hydrazone-containing short peptide derivative. Soft Matter, 16(4), 899–906. https://doi.org/10.1039/C9SM01969C

Sun, P., Wu, Z., Xiao, Y., Wu, H., Di, Q., Zhao, X., Quan, J., Tang, H., Wang, Q., & Chen, W. (2022). TfR-T12 short peptide and pH sensitive cell transmembrane peptide modified nano-composite micelles for glioma treatment via remodeling tumor microenvironment. Nanomedicine: Nanotechnology, Biology and Medicine, 41, 102516. https://doi.org/10.1016/j.nano.2022.102516

Tao, K., Wu, H., Adler-Abramovich, L., Zhang, J., Fan, X., Wang, Y., Zhang, Y., Tofail, S. A. M., Mei, D., Li, J., & Gazit, E. (2024). Aromatic short peptide architectonics: Assembly and engineering. Progress in Materials Science, 142, 101240. https://doi.org/10.1016/j.pmatsci.2024.101240

Thota, C. K., Berger, A. A., Harms, B., Seidel, M., Böttcher, C., Von Berlepsch, H., Xie, C., Süssmuth, R., Roth, C., & Koksch, B. (2020). Short self?assembling cationic antimicrobial peptide mimetics based on a 3,5?diaminobenzoic acid scaffold. Peptide Science, 112(1), e24130. https://doi.org/10.1002/pep2.24130

Turrina, C., Berensmeier, S., & Schwaminger, S. P. (2021). Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin. Pharmaceuticals, 14(5), 405. https://doi.org/10.3390/ph14050405

Wang, L., Shen, G., & Yan, X. (2022). Bio-inspired short peptide self-assembly: From particles to functional materials. Particuology, 64, 14–34. https://doi.org/10.1016/j.partic.2021.05.007

Wang, S., Liu, F., Ma, N., Li, Y., Jing, Q., Zhou, X., & Xia, Y. (2021). Mechanistic process understanding of the self-assembling behaviour of asymmetric bolaamphiphilic short-peptides and their templating for silica and titania nanomaterials. Nanoscale, 13(31), 13318–13327. https://doi.org/10.1039/D1NR01661J

Wang, Y., Feng, Z., Yang, M., Zeng, L., Qi, B., Yin, S., Li, B., Li, Y., Fu, Z., Shu, L., Fu, C., Qin, P., Meng, Y., Li, X., Yang, Y., Tang, J., & Yang, X. (2021). Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacological Research, 163, 105296. https://doi.org/10.1016/j.phrs.2020.105296

Xiong, Y., Zhou, L., Peng, X., Li, H., Wang, H., He, L., & Huang, P. (2020). A specific short peptide-assisted enhanced chemiluminescence resonance energy transfer (CRET) for label-free and ratiometric detection of copper ions in complex samples. Sensors and Actuators B: Chemical, 320, 128411. https://doi.org/10.1016/j.snb.2020.128411

Yang, D., Kim, B. J., He, H., & Xu, B. (2021). Enzymatically forming cell compatible supramolecular assemblies of tryptophan?rich short peptides. Peptide Science, 113(2), e24173. https://doi.org/10.1002/pep2.24173

Yang, S., Wang, M., Wang, T., Sun, M., Huang, H., Shi, X., Duan, S., Wu, Y., Zhu, J., & Liu, F. (2023). Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Materials Today Bio, 20, 100644. https://doi.org/10.1016/j.mtbio.2023.100644

Yi, M., Guo, J., He, H., Tan, W., Harmon, N., Ghebreyessus, K., & Xu, B. (2021). Phosphobisaromatic motifs enable rapid enzymatic self-assembly and hydrogelation of short peptides. Soft Matter, 17(38), 8590–8594. https://doi.org/10.1039/D1SM01221E

Zhang, J., Yu, W., Wei, T., Zhang, C., Wen, L., Chen, Q., Chen, W., Qiu, J., Zhang, Y., & Liang, T. (2020). Effects of Short?Peptide?Based Enteral Nutrition on the Intestinal Microcirculation and Mucosal Barrier in Mice with Severe Acute Pancreatitis. Molecular Nutrition & Food Research, 64(5), 1901191. https://doi.org/10.1002/mnfr.201901191

Zhang, Z., Li, Y., Yuan, W., Wang, Z., & Wan, C. (2022). Proteomics?driven identification of short open reading frame?encoded peptides. PROTEOMICS, 22(15–16), 2100312. https://doi.org/10.1002/pmic.202100312

Authors

Miksusanti Miksusanti
sunwei@gmail.com (Primary Contact)
Faisal Razak
Nurul Huda
Muntasir Muntasir
Miksusanti, M., Razak, F., Huda, N., & Muntasir, M. (2024). Design of Short Peptides as Targeted Protein Inhibitors for Alzheimer’s Disease. Journal of Biomedical and Techno Nanomaterials, 1(3), 106–116. https://doi.org/10.70177/jbtn.v1i3.1757

Article Details