Design of Short Peptides as Targeted Protein Inhibitors for Alzheimer’s Disease
Abstract
Alzheimer's disease is a neurodegenerative disorder marked by cognitive decline and memory loss, primarily caused by the aggregation of amyloid-beta and tau proteins in the brain. Conventional treatments offer limited benefits, emphasizing the need for new therapeutic strategies. To design and evaluate short peptides as targeted protein inhibitors to prevent the aggregation of amyloid-beta and tau proteins, aiming to halt or reverse the progression of Alzheimer's disease. The study employed computational modeling to design peptides, followed by in vitro assays for initial screening, and in vivo tests using transgenic mouse models to assess therapeutic efficacy and safety. Techniques included mass spectrometry, HPLC, and behavioral tests for cognitive function. Designed peptides demonstrated high binding affinity and specificity for amyloid-beta and tau proteins, reducing aggregation by 70% in vitro. In vivo studies showed significant reductions in amyloid plaques and tau tangles, with improved cognitive performance in treated mice. Peptides effectively crossed the blood-brain barrier and accumulated in target brain regions. The findings support the potential of short peptides as a novel therapeutic approach for Alzheimer's disease, warranting further research and clinical trials to validate their efficacy and safety in human subjects.
Full text article
References
Aicher, A., Sindrilaru, A., Crisan, D., Thaiss, W., Steinacker, J., Beer, M., Wiegel, T., Scharffetter-Kochanek, K., Beer, A. J., & Prasad, V. (2022). Short-Interval, Low-Dose Peptide Receptor Radionuclide Therapy in Combination with PD-1 Checkpoint Immunotherapy Induces Remission in Immunocompromised Patients with Metastatic Merkel Cell Carcinoma. Pharmaceutics, 14(7), 1466. https://doi.org/10.3390/pharmaceutics14071466
Apostolopoulos, V., Bojarska, J., Chai, T.-T., Elnagdy, S., Kaczmarek, K., Matsoukas, J., New, R., Parang, K., Lopez, O. P., Parhiz, H., Perera, C. O., Pickholz, M., Remko, M., Saviano, M., Skwarczynski, M., Tang, Y., Wolf, W. M., Yoshiya, T., Zabrocki, J., … Toth, I. (2021). A Global Review on Short Peptides: Frontiers and Perspectives. Molecules, 26(2), 430. https://doi.org/10.3390/molecules26020430
Apostolopoulos, V., Bojarska, J., Chai, T.-T., Feehan, J., Kaczmarek, K., Matsoukas, J. M., Paredes Lopez, O., Saviano, M., Skwarczynski, M., Smith-Carpenter, J., Venanzi, M., Wolf, W. M., Zielenkiewicz, P., & Ziora, Z. M. (2022). New Advances in Short Peptides: Looking Forward. Molecules, 27(11), 3635. https://doi.org/10.3390/molecules27113635
Argudo, P. G., & Giner-Casares, J. J. (2021). Folding and self-assembly of short intrinsically disordered peptides and protein regions. Nanoscale Advances, 3(7), 1789–1812. https://doi.org/10.1039/D0NA00941E
Arul, A., Sivagnanam, S., Dey, A., Mukherjee, O., Ghosh, S., & Das, P. (2020). The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings. RSC Advances, 10(23), 13420–13429. https://doi.org/10.1039/C9RA10018K
Cassidy, L., Kaulich, P. T., Maaß, S., Bartel, J., Becher, D., & Tholey, A. (2021). Bottom?up and top?down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame?encoded peptides. PROTEOMICS, 21(23–24), 2100008. https://doi.org/10.1002/pmic.202100008
Cerrato, A., Aita, S. E., Capriotti, A. L., Cavaliere, C., Montone, C. M., Laganà, A., & Piovesana, S. (2020). A new opening for the tricky untargeted investigation of natural and modified short peptides. Talanta, 219, 121262. https://doi.org/10.1016/j.talanta.2020.121262
Chowdhuri, S., Ghosh, M., Adler-Abramovich, L., & Das, D. (2021). The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer Hydrogels. Pharmaceutics, 13(10), 1602. https://doi.org/10.3390/pharmaceutics13101602
Fu, W., Farhadi Sabet, Z., Liu, J., You, M., Zhou, H., Wang, Y., Gao, Y., Li, J., Ma, X., & Chen, C. (2020). Metal ions modulation of the self-assembly of short peptide conjugated nonsteroidal anti-inflammatory drugs (NSAIDs). Nanoscale, 12(14), 7960–7968. https://doi.org/10.1039/D0NR00572J
Gila-Vilchez, C., Mañas-Torres, M. C., González-Vera, J. A., Franco-Montalban, F., Tamayo, J. A., Conejero-Lara, F., Cuerva, J. M., Lopez-Lopez, M. T., Orte, A., & Álvarez De Cienfuegos, L. (2021). Insights into the co-assemblies formed by different aromatic short-peptide amphiphiles. Polymer Chemistry, 12(47), 6832–6845. https://doi.org/10.1039/D1PY01366A
Han, X., Wang, Y., Zhang, P., Zhu, M., Li, L., Mao, X., Sha, X., & Li, L. (2021). Kazak faecal microbiota transplantation induces short-chain fatty acids that promote glucagon-like peptide-1 secretion by regulating gut microbiota in db/db mice. Pharmaceutical Biology, 59(1), 1075–1085. https://doi.org/10.1080/13880209.2021.1954667
He, X., Zhou, S., Quinn, B., Jahagirdar, D., Ortega, J., Abrams, S. I., & Lovell, J. F. (2021). HPV?Associated Tumor Eradication by Vaccination with Synthetic Short Peptides and Particle?Forming Liposomes. Small, 17(11), 2007165. https://doi.org/10.1002/smll.202007165
Jain, R., & Roy, S. (2020). Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly. Materials Science and Engineering: C, 108, 110483. https://doi.org/10.1016/j.msec.2019.110483
Kaulich, P. T., Cassidy, L., Weidenbach, K., Schmitz, R. A., & Tholey, A. (2020). Complementarity of Different SDS?PAGE Gel Staining Methods for the Identification of Short Open Reading Frame?Encoded Peptides. PROTEOMICS, 20(19–20), 2000084. https://doi.org/10.1002/pmic.202000084
Koehbach, J., Gani, J., Hilpert, K., & Craik, D. J. (2021). Comparison of a Short Linear Antimicrobial Peptide with Its Disulfide-Cyclized and Cyclotide-Grafted Variants against Clinically Relevant Pathogens. Microorganisms, 9(6), 1249. https://doi.org/10.3390/microorganisms9061249
La Manna, S., Florio, D., Panzetta, V., Roviello, V., Netti, P. A., Di Natale, C., & Marasco, D. (2022). Hydrogelation tunability of bioinspired short peptides. Soft Matter, 18(44), 8418–8426. https://doi.org/10.1039/D2SM01385A
Mañas-Torres, M. C., Gila-Vilchez, C., González-Vera, J. A., Conejero-Lara, F., Blanco, V., Cuerva, J. M., Lopez-Lopez, M. T., Orte, A., & Álvarez De Cienfuegos, L. (2021). In situ real-time monitoring of the mechanism of self-assembly of short peptide supramolecular polymers. Materials Chemistry Frontiers, 5(14), 5452–5462. https://doi.org/10.1039/D1QM00477H
Manju Devi, S., Raj, N., & Sashidhar, R. B. (2021). Efficacy of short-synthetic antifungal peptides on pathogenic Aspergillus flavus. Pesticide Biochemistry and Physiology, 174, 104810. https://doi.org/10.1016/j.pestbp.2021.104810
Mehra, R. R., Basu, A., Christman, R. M., Harjit, J., Mishra, A. K., Tiwari, A. K., & DuttKonar, A. (2020). Mechanoresponsive, proteolytically stable and biocompatible supergelators from ultra short enantiomeric peptides with sustained drug release propensity. New Journal of Chemistry, 44(16), 6346–6354. https://doi.org/10.1039/D0NJ00102C
Pal, V. K., & Roy, S. (2022). Cooperative Metal Ion Coordination to the Short Self?Assembling Peptide Promotes Hydrogelation and Cellular Proliferation. Macromolecular Bioscience, 22(5), 2100462. config.json[1].gz
Perlikowska, R. (2021). Whether short peptides are good candidates for future neuroprotective therapeutics? Peptides, 140, 170528. https://doi.org/10.1016/j.peptides.2021.170528
Pizzoferrato, M., Puca, P., Ennas, S., Cammarota, G., & Guidi, L. (2022). Glucagon-like peptide-2 analogues for Crohn’s disease patients with short bowel syndrome and intestinal failure. World Journal of Gastroenterology, 28(44), 6258–6270. https://doi.org/10.3748/wjg.v28.i44.6258
Rahman, N., Islam, M. M., Unzai, S., Miura, S., & Kuroda, Y. (2020). Nanometer-Sized Aggregates Generated Using Short Solubility Controlling Peptide Tags Do Increase the In Vivo Immunogenicity of a Nonimmunogenic Protein. Molecular Pharmaceutics, 17(5), 1629–1637. https://doi.org/10.1021/acs.molpharmaceut.0c00071
Restu, W. K., Yamamoto, S., Nishida, Y., Ienaga, H., Aoi, T., & Maruyama, T. (2020). Hydrogel formation by short D-peptide for cell-culture scaffolds. Materials Science and Engineering: C, 111, 110746. https://doi.org/10.1016/j.msec.2020.110746
Seo, J.-K., Kim, D.-G., Lee, J.-E., Park, K.-S., Lee, I.-A., Lee, K.-Y., Kim, Y.-O., & Nam, B.-H. (2021). Antimicrobial Activity and Action Mechanisms of Arg-Rich Short Analog Peptides Designed from the C-Terminal Loop Region of American Oyster Defensin (AOD). Marine Drugs, 19(8), 451. https://doi.org/10.3390/md19080451
Singh, R., Mishra, N. K., Singh, N., Rawal, P., Gupta, P., & Joshi, K. B. (2020). Transition metal ions induced secondary structural transformation in a hydrophobized short peptide amphiphile. New Journal of Chemistry, 44(22), 9255–9263. https://doi.org/10.1039/D0NJ01501F
Stefani, D., Guo, C., Ornago, L., Cabosart, D., El Abbassi, M., Sheves, M., Cahen, D., & Van Der Zant, H. S. J. (2021). Conformation-dependent charge transport through short peptides. Nanoscale, 13(5), 3002–3009. https://doi.org/10.1039/D0NR08556A
Sugiura, T., Kanada, T., Mori, D., Sakai, H., Shibata, A., Kitamura, Y., & Ikeda, M. (2020). Chemical stimulus-responsive supramolecular hydrogel formation and shrinkage of a hydrazone-containing short peptide derivative. Soft Matter, 16(4), 899–906. https://doi.org/10.1039/C9SM01969C
Sun, P., Wu, Z., Xiao, Y., Wu, H., Di, Q., Zhao, X., Quan, J., Tang, H., Wang, Q., & Chen, W. (2022). TfR-T12 short peptide and pH sensitive cell transmembrane peptide modified nano-composite micelles for glioma treatment via remodeling tumor microenvironment. Nanomedicine: Nanotechnology, Biology and Medicine, 41, 102516. https://doi.org/10.1016/j.nano.2022.102516
Tao, K., Wu, H., Adler-Abramovich, L., Zhang, J., Fan, X., Wang, Y., Zhang, Y., Tofail, S. A. M., Mei, D., Li, J., & Gazit, E. (2024). Aromatic short peptide architectonics: Assembly and engineering. Progress in Materials Science, 142, 101240. https://doi.org/10.1016/j.pmatsci.2024.101240
Thota, C. K., Berger, A. A., Harms, B., Seidel, M., Böttcher, C., Von Berlepsch, H., Xie, C., Süssmuth, R., Roth, C., & Koksch, B. (2020). Short self?assembling cationic antimicrobial peptide mimetics based on a 3,5?diaminobenzoic acid scaffold. Peptide Science, 112(1), e24130. https://doi.org/10.1002/pep2.24130
Turrina, C., Berensmeier, S., & Schwaminger, S. P. (2021). Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin. Pharmaceuticals, 14(5), 405. https://doi.org/10.3390/ph14050405
Wang, L., Shen, G., & Yan, X. (2022). Bio-inspired short peptide self-assembly: From particles to functional materials. Particuology, 64, 14–34. https://doi.org/10.1016/j.partic.2021.05.007
Wang, S., Liu, F., Ma, N., Li, Y., Jing, Q., Zhou, X., & Xia, Y. (2021). Mechanistic process understanding of the self-assembling behaviour of asymmetric bolaamphiphilic short-peptides and their templating for silica and titania nanomaterials. Nanoscale, 13(31), 13318–13327. https://doi.org/10.1039/D1NR01661J
Wang, Y., Feng, Z., Yang, M., Zeng, L., Qi, B., Yin, S., Li, B., Li, Y., Fu, Z., Shu, L., Fu, C., Qin, P., Meng, Y., Li, X., Yang, Y., Tang, J., & Yang, X. (2021). Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacological Research, 163, 105296. https://doi.org/10.1016/j.phrs.2020.105296
Xiong, Y., Zhou, L., Peng, X., Li, H., Wang, H., He, L., & Huang, P. (2020). A specific short peptide-assisted enhanced chemiluminescence resonance energy transfer (CRET) for label-free and ratiometric detection of copper ions in complex samples. Sensors and Actuators B: Chemical, 320, 128411. https://doi.org/10.1016/j.snb.2020.128411
Yang, D., Kim, B. J., He, H., & Xu, B. (2021). Enzymatically forming cell compatible supramolecular assemblies of tryptophan?rich short peptides. Peptide Science, 113(2), e24173. https://doi.org/10.1002/pep2.24173
Yang, S., Wang, M., Wang, T., Sun, M., Huang, H., Shi, X., Duan, S., Wu, Y., Zhu, J., & Liu, F. (2023). Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Materials Today Bio, 20, 100644. https://doi.org/10.1016/j.mtbio.2023.100644
Yi, M., Guo, J., He, H., Tan, W., Harmon, N., Ghebreyessus, K., & Xu, B. (2021). Phosphobisaromatic motifs enable rapid enzymatic self-assembly and hydrogelation of short peptides. Soft Matter, 17(38), 8590–8594. https://doi.org/10.1039/D1SM01221E
Zhang, J., Yu, W., Wei, T., Zhang, C., Wen, L., Chen, Q., Chen, W., Qiu, J., Zhang, Y., & Liang, T. (2020). Effects of Short?Peptide?Based Enteral Nutrition on the Intestinal Microcirculation and Mucosal Barrier in Mice with Severe Acute Pancreatitis. Molecular Nutrition & Food Research, 64(5), 1901191. https://doi.org/10.1002/mnfr.201901191
Zhang, Z., Li, Y., Yuan, W., Wang, Z., & Wan, C. (2022). Proteomics?driven identification of short open reading frame?encoded peptides. PROTEOMICS, 22(15–16), 2100312. https://doi.org/10.1002/pmic.202100312
Authors
Copyright (c) 2024 Miksusanti Miksusanti, Faisal Razak, Nurul Huda

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.