Synthesis and Characterization of Magnetic Nanoparticles as Contrast Agents for Tumor Imaging

Ton Kiat (1), Siri Lek (2), Aom Thai (3), Muntasir Muntasir (4)
(1) Assumption University, Thailand,
(2) Silpakorn University, Thailand,
(3) Srinakharinwirot University, Thailand,
(4) Universitas Nusa Cendana, Indonesia

Abstract

Magnetic nanoparticles (MNPs) have emerged as promising materials for biomedical applications, particularly as contrast agents in tumor imaging. Early and accurate tumor detection is critical for improving treatment outcomes, yet current imaging techniques often lack sensitivity and specificity. This study aimed to synthesize and characterize magnetic nanoparticles for their potential as contrast agents in tumor imaging. The nanoparticles were synthesized using a co-precipitation method, followed by surface modification with organic compounds to enhance stability and targeting specificity. Characterization included transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS). Cytotoxicity and targeting efficiency were evaluated in vitro using cultured human tumor cells. The results demonstrated that the synthesized nanoparticles had an average size of 25 ± 5 nm, superparamagnetic properties with a saturation magnetization of 55 emu/g, and high colloidal stability due to surface modifications. Fluorescence imaging revealed significant accumulation of the nanoparticles in tumor cells, while cytotoxicity tests showed cell viability above 85% at concentrations up to 100 ?g/mL. These findings indicate the nanoparticles are safe and effective for tumor imaging. This study highlights the importance of integrating synthesis, characterization, and biological evaluation to optimize nanoparticle design for biomedical applications. While the results are promising, further in vivo studies are needed to evaluate nanoparticle distribution, accumulation, and clearance in complex biological systems. The findings provide a foundation for future research and development of advanced contrast agents for tumor imaging

Full text article

Generated from XML file

References

Albalawi, A. E., Khalaf, A. K., Alyousif, M. S., Alanazi, A. D., Baharvand, P., Shakibaie, M., & Mahmoudvand, H. (2021). Fe3O4@piroctone olamine magnetic nanoparticles: Synthesize and therapeutic potential in cutaneous leishmaniasis. Biomedicine & Pharmacotherapy, 139, 111566. https://doi.org/10.1016/j.biopha.2021.111566

Almomani, F., Bhosale, R., Khraisheh, M., Kumar, A., & Almomani, T. (2020). Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Applied Surface Science, 506, 144924. https://doi.org/10.1016/j.apsusc.2019.144924

Asadi, R., Abdollahi, H., Gharabaghi, M., & Boroumand, Z. (2020). Effective removal of Zn (II) ions from aqueous solution by the magnetic MnFe2O4 and CoFe2O4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption. Advanced Powder Technology, 31(4), 1480–1489. https://doi.org/10.1016/j.apt.2020.01.028

Beketova, D., Motola, M., Sopha, H., Michalicka, J., Cicmancova, V., Dvorak, F., Hromadko, L., Frumarova, B., Stoica, M., & Macak, J. M. (2020). One-Step Decoration of TiO2 Nanotubes with Fe3 O4 Nanoparticles: Synthesis and Photocatalytic and Magnetic Properties. ACS Applied Nano Materials, 3(2), 1553–1563. https://doi.org/10.1021/acsanm.9b02337

Bhosale, A. B., Somvanshi, S. B., Murumkar, V. D., & Jadhav, K. M. (2020). Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: Magnetic, electrical and dielectric behaviour. Ceramics International, 46(10), 15372–15378. https://doi.org/10.1016/j.ceramint.2020.03.081

Chang, L., Pu, Y., Jing, P., Cui, Y., Zhang, G., Xu, S., Cao, B., Guo, J., Chen, F., & Qiao, C. (2021). Magnetic core-shell MnFe2O4@TiO2 nanoparticles decorated on reduced graphene oxide as a novel adsorbent for the removal of ciprofloxacin and Cu(II) from water. Applied Surface Science, 541, 148400. https://doi.org/10.1016/j.apsusc.2020.148400

Chen, X., Ge, X., Qian, Y., Tang, H., Song, J., Qu, X., Yue, B., & Yuan, W. (2020). Electrospinning Multilayered Scaffolds Loaded with Melatonin and Fe3 O4 Magnetic Nanoparticles for Peripheral Nerve Regeneration. Advanced Functional Materials, 30(38), 2004537. https://doi.org/10.1002/adfm.202004537

Du, Y., Liu, H., Chen, Y., Tian, Y., Zhang, X., Gu, C., Jiang, T., & Zhou, J. (2020). Recyclable label-free SERS-based immunoassay of PSA in human serum mediated by enhanced photocatalysis arising from Ag nanoparticles and external magnetic field. Applied Surface Science, 528, 146953. https://doi.org/10.1016/j.apsusc.2020.146953

Ebadi, M., Buskaran, K., Bullo, S., Hussein, M. Z., Fakurazi, S., & Pastorin, G. (2021). Drug delivery system based on magnetic iron oxide nanoparticles coated with (polyvinyl alcohol-zinc/aluminium-layered double hydroxide-sorafenib). Alexandria Engineering Journal, 60(1), 733–747. https://doi.org/10.1016/j.aej.2020.09.061

Gambhir, R. P., Rohiwal, S. S., & Tiwari, A. P. (2022). Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review. Applied Surface Science Advances, 11, 100303. https://doi.org/10.1016/j.apsadv.2022.100303

Gul, S., Yousuf, M. A., Anwar, A., Warsi, M. F., Agboola, P. O., Shakir, I., & Shahid, M. (2020). Al-substituted zinc spinel ferrite nanoparticles: Preparation and evaluation of structural, electrical, magnetic and photocatalytic properties. Ceramics International, 46(9), 14195–14205. https://doi.org/10.1016/j.ceramint.2020.02.228

Jesus, A. C. B., Jesus, J. R., Lima, R. J. S., Moura, K. O., Almeida, J. M. A., Duque, J. G. S., & Meneses, C. T. (2020). Synthesis and magnetic interaction on concentrated Fe3O4 nanoparticles obtained by the co-precipitation and hydrothermal chemical methods. Ceramics International, 46(8), 11149–11153. https://doi.org/10.1016/j.ceramint.2020.01.135

Ji, Y., Han, Z., Ding, H., Xu, X., Wang, D., Zhu, Y., An, F., Tang, S., Zhang, H., Deng, J., & Zhou, Q. (2021). Enhanced Eradication of Bacterial/Fungi Biofilms by Glucose Oxidase-Modified Magnetic Nanoparticles as a Potential Treatment for Persistent Endodontic Infections. ACS Applied Materials & Interfaces, 13(15), 17289–17299. https://doi.org/10.1021/acsami.1c01748

Khizar, S., Ahmad, N. M., Zine, N., Jaffrezic-Renault, N., Errachid-el-salhi, A., & Elaissari, A. (2021). Magnetic Nanoparticles: From Synthesis to Theranostic Applications. ACS Applied Nano Materials, 4(5), 4284–4306. https://doi.org/10.1021/acsanm.1c00852

Kim, D., Lee, H., Kwon, S., Sung, Y. J., Song, W. K., & Park, S. (2020). Bilayer Hydrogel Sheet?Type Intraocular Microrobot for Drug Delivery and Magnetic Nanoparticles Retrieval. Advanced Healthcare Materials, 9(13), 2000118. https://doi.org/10.1002/adhm.202000118

Lee, H., Kim, D., Kwon, S., & Park, S. (2021). Magnetically Actuated Drug Delivery Helical Microrobot with Magnetic Nanoparticle Retrieval Ability. ACS Applied Materials & Interfaces, 13(17), 19633–19647. https://doi.org/10.1021/acsami.1c01742

Li, B., Chen, X., Qiu, W., Zhao, R., Duan, J., Zhang, S., Pan, Z., Zhao, S., Guo, Q., Qi, Y., Wang, W., Deng, L., Ni, S., Sang, Y., Xue, H., Liu, H., & Li, G. (2022). Synchronous Disintegration of Ferroptosis Defense Axis via Engineered Exosome?Conjugated Magnetic Nanoparticles for Glioblastoma Therapy. Advanced Science, 9(17), 2105451. https://doi.org/10.1002/advs.202105451

Liang, L., Yang, R., Han, G., Feng, Y., Zhao, B., Zhang, R., Wang, Y., & Liu, C. (2020). Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti3 C2 T x MXene. ACS Applied Materials & Interfaces, 12(2), 2644–2654. https://doi.org/10.1021/acsami.9b18504

Liu, L., Mi, H., Zhang, M., Sun, F., Zhan, R., Zhao, H., He, S., & Zhou, L. (2021). Efficient moxifloxacin degradation by CoFe2O4 magnetic nanoparticles activated peroxymonosulfate: Kinetics, pathways and mechanisms. Chemical Engineering Journal, 407, 127201. https://doi.org/10.1016/j.cej.2020.127201

Mamiya, H., Fukumoto, H., Cuya Huaman, J. L., Suzuki, K., Miyamura, H., & Balachandran, J. (2020). Estimation of Magnetic Anisotropy of Individual Magnetite Nanoparticles for Magnetic Hyperthermia. ACS Nano, 14(7), 8421–8432. https://doi.org/10.1021/acsnano.0c02521

Manohar, A., Geleta, D. D., Krishnamoorthi, C., & Lee, J. (2020). Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles. Ceramics International, 46(18), 28035–28041. https://doi.org/10.1016/j.ceramint.2020.07.298

Materón, E. M., Miyazaki, C. M., Carr, O., Joshi, N., Picciani, P. H. S., Dalmaschio, C. J., Davis, F., & Shimizu, F. M. (2021). Magnetic nanoparticles in biomedical applications: A review. Applied Surface Science Advances, 6, 100163. https://doi.org/10.1016/j.apsadv.2021.100163

Mohanta, J., Dey, B., & Dey, S. (2020). Sucrose-Triggered, Self-Sustained Combustive Synthesis of Magnetic Nickel Oxide Nanoparticles and Efficient Removal of Malachite Green from Water. ACS Omega, 5(27), 16510–16520. https://doi.org/10.1021/acsomega.0c00999

Patade, S. R., Andhare, D. D., Somvanshi, S. B., Jadhav, S. A., Khedkar, M. V., & Jadhav, K. M. (2020). Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceramics International, 46(16), 25576–25583. https://doi.org/10.1016/j.ceramint.2020.07.029

Podstawczyk, D., Nizio?, M., Szymczyk, P., Wi?niewski, P., & Guiseppi-Elie, A. (2020). 3D printed stimuli-responsive magnetic nanoparticle embedded alginate-methylcellulose hydrogel actuators. Additive Manufacturing, 34, 101275. https://doi.org/10.1016/j.addma.2020.101275

Sin, J.-C., Lam, S.-M., Zeng, H., Lin, H., Li, H., Tham, K.-O., Mohamed, A. R., Lim, J.-W., & Qin, Z. (2021). Magnetic NiFe2O4 nanoparticles decorated on N-doped BiOBr nanosheets for expeditious visible light photocatalytic phenol degradation and hexavalent chromium reduction via a Z-scheme heterojunction mechanism. Applied Surface Science, 559, 149966. https://doi.org/10.1016/j.apsusc.2021.149966

Soleymani, M., Velashjerdi, M., Shaterabadi, Z., & Barati, A. (2020). One-pot preparation of hyaluronic acid?coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohydrate Polymers, 237, 116130. https://doi.org/10.1016/j.carbpol.2020.116130

Sreedevi, P., & Sudarsana Reddy, P. (2022). Effect of magnetic field and thermal radiation on natural convection in a square cavity filled with TiO2 nanoparticles using Tiwari-Das nanofluid model. Alexandria Engineering Journal, 61(2), 1529–1541. https://doi.org/10.1016/j.aej.2021.06.055

Suo, H., Xu, L., Xue, Y., Qiu, X., Huang, H., & Hu, Y. (2020). Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance. Carbohydrate Polymers, 234, 115914. https://doi.org/10.1016/j.carbpol.2020.115914

Wang, Q., Ma, X., Liao, H., Liang, Z., Li, F., Tian, J., & Ling, D. (2020). Artificially Engineered Cubic Iron Oxide Nanoparticle as a High-Performance Magnetic Particle Imaging Tracer for Stem Cell Tracking. ACS Nano, 14(2), 2053–2062. https://doi.org/10.1021/acsnano.9b08660

Wu, K., Su, D., Saha, R., Liu, J., Chugh, V. K., & Wang, J.-P. (2020). Magnetic Particle Spectroscopy: A Short Review of Applications Using Magnetic Nanoparticles. ACS Applied Nano Materials, 3(6), 4972–4989. https://doi.org/10.1021/acsanm.0c00890

Xiang, Y., Huang, Y., Xiao, B., Wu, X., & Zhang, G. (2020a). Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study. Applied Surface Science, 513, 145820. https://doi.org/10.1016/j.apsusc.2020.145820

Xiang, Y., Huang, Y., Xiao, B., Wu, X., & Zhang, G. (2020b). Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study. Applied Surface Science, 513, 145820. https://doi.org/10.1016/j.apsusc.2020.145820

You, S.-M., Luo, K., Jung, J.-Y., Jeong, K.-B., Lee, E.-S., Oh, M.-H., & Kim, Y.-R. (2020). Gold Nanoparticle-Coated Starch Magnetic Beads for the Separation, Concentration, and SERS-Based Detection of E. coli O157:H7. ACS Applied Materials & Interfaces, 12(16), 18292–18300. https://doi.org/10.1021/acsami.0c00418

Zheng, X., Zheng, H., Xiong, Z., Zhao, R., Liu, Y., Zhao, C., & Zheng, C. (2020). Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions. Chemical Engineering Journal, 392, 123706. https://doi.org/10.1016/j.cej.2019.123706

Zhong, J., Rösch, E. L., Viereck, T., Schilling, M., & Ludwig, F. (2021). Toward Rapid and Sensitive Detection of SARS-CoV-2 with Functionalized Magnetic Nanoparticles. ACS Sensors, 6(3), 976–984. https://doi.org/10.1021/acssensors.0c02160

Zhu, N., Zhang, B., & Yu, Q. (2020). Genetic Engineering-Facilitated Coassembly of Synthetic Bacterial Cells and Magnetic Nanoparticles for Efficient Heavy Metal Removal. ACS Applied Materials & Interfaces, 12(20), 22948–22957. https://doi.org/10.1021/acsami.0c04512

Zwi?Dantsis, L., Wang, B., Marijon, C., Zonetti, S., Ferrini, A., Massi, L., Stuckey, D. J., Terracciano, C. M., & Stevens, M. M. (2020). Remote Magnetic Nanoparticle Manipulation Enables the Dynamic Patterning of Cardiac Tissues. Advanced Materials, 32(6), 1904598. https://doi.org/10.1002/adma.201904598

Authors

Ton Kiat
tonkiat@gmail.com (Primary Contact)
Siri Lek
Aom Thai
Muntasir Muntasir
Kiat, T., Lek, S., Thai, A., & Muntasir, M. (2024). Synthesis and Characterization of Magnetic Nanoparticles as Contrast Agents for Tumor Imaging. Journal of Biomedical and Techno Nanomaterials, 1(3), 129–142. https://doi.org/10.70177/jbtn.v1i3.1759

Article Details