Development of an Aptamer-Based Electrochemical Biosensor for Early Detection of Prostate Cancer Markers

Sofia Lim (1), Marcus Tan (2), Ethan Tan (3)
(1) Singapore University of Technology and Design (SUTD), Singapore,
(2) Duke-NUS Medical School, Singapore,
(3) National University of Singapore (NUS), Singapore

Abstract

Prostate cancer is a leading malignancy in men, where early detection is critical for effective treatment. Current diagnostic methods, such as PSA tests, have limitations in sensitivity and specificity. To develop an aptamer-based electrochemical biosensor for the early detection of prostate cancer markers, aiming to improve diagnostic accuracy and speed. The study involved the design and optimization of aptamers through SELEX, integration with electrochemical sensors, and validation using prostate cancer cell lines and clinical samples. Instruments used include electrochemical workstations, HPLC, and mass spectrometry for characterization and evaluation. The developed biosensor demonstrated a detection limit of 0.1 ng/mL for PSA, with a response time of less than 10 minutes. High reproducibility was achieved with a coefficient of variation below 5%, and the biosensor showed significant specificity and stability in detecting PSA in various samples. The aptamer-based electrochemical biosensor offers a promising tool for the early detection of prostate cancer markers, providing higher sensitivity and specificity compared to traditional methods. Further clinical validation is necessary to confirm its efficacy and reliability in broader applications.

Full text article

Generated from XML file

References

Abdelrasoul, G. N., Anwar, A., MacKay, S., Tamura, M., Shah, M. A., Khasa, D. P., Montgomery, R. R., Ko, A. I., & Chen, J. (2020). DNA aptamer-based non-faradaic impedance biosensor for detecting E. coli. Analytica Chimica Acta, 1107, 135–144. https://doi.org/10.1016/j.aca.2020.02.004

Chen, J., Meng, H.-M., An, Y., Geng, X., Zhao, K., Qu, L., & Li, Z. (2020). Structure-switching aptamer triggering hybridization displacement reaction for label-free detection of exosomes. Talanta, 209, 120510. https://doi.org/10.1016/j.talanta.2019.120510

Ding, C., Zhang, C., Cheng, S., & Xian, Y. (2020). Multivalent Aptamer Functionalized Ag2 S Nanodots/Hybrid Cell Membrane?Coated Magnetic Nanobioprobe for the Ultrasensitive Isolation and Detection of Circulating Tumor Cells. Advanced Functional Materials, 30(16), 1909781. https://doi.org/10.1002/adfm.201909781

He, S., Gao, F., Ma, J., Ma, H., Dong, G., & Sheng, C. (2021). Aptamer?PROTAC Conjugates (APCs) for Tumor?Specific Targeting in Breast Cancer. Angewandte Chemie International Edition, 60(43), 23299–23305. https://doi.org/10.1002/anie.202107347

He, X., Ren, X., Peng, Y., Zhang, J., Ai, S., Liu, B., Xu, C., & Cheng, S. (2020). Aptamer/Peptide?Functionalized Genome?Editing System for Effective Immune Restoration through Reversal of PD?L1?Mediated Cancer Immunosuppression. Advanced Materials, 32(17), 2000208. https://doi.org/10.1002/adma.202000208

Hong, C., Zhang, X., Ye, S., Yang, H., Huang, Z., Yang, D., Cai, R., & Tan, W. (2021). Aptamer-Pendant DNA Tetrahedron Nanostructure Probe for Ultrasensitive Detection of Tetracycline by Coupling Target-Triggered Rolling Circle Amplification. ACS Applied Materials & Interfaces, 13(17), 19695–19700. https://doi.org/10.1021/acsami.1c02612

Kwon, J., Lee, Y., Lee, T., & Ahn, J.-H. (2020). Aptamer-Based Field-Effect Transistor for Detection of Avian Influenza Virus in Chicken Serum. Analytical Chemistry, 92(7), 5524–5531. https://doi.org/10.1021/acs.analchem.0c00348

Li, H., Xing, S., Xu, J., He, Y., Lai, Y., Wang, Y., Zhang, G., Guo, S., Deng, M., Zeng, M., & Liu, W. (2021). Aptamer-based CRISPR/Cas12a assay for the ultrasensitive detection of extracellular vesicle proteins. Talanta, 221, 121670. https://doi.org/10.1016/j.talanta.2020.121670

Lin, B., Tian, T., Lu, Y., Liu, D., Huang, M., Zhu, L., Zhu, Z., Song, Y., & Yang, C. (2021). Tracing Tumor?Derived Exosomal PD?L1 by Dual?Aptamer Activated Proximity?Induced Droplet Digital PCR. Angewandte Chemie International Edition, 60(14), 7582–7586. https://doi.org/10.1002/anie.202015628

Lu, C., Gao, X., Chen, Y., Ren, J., & Liu, C. (2020). Aptamer-Based Lateral Flow Test Strip for the Simultaneous Detection of Salmonella typhimurium , Escherichia coli O157:H7 and Staphylococcus aureus. Analytical Letters, 53(4), 646–659. https://doi.org/10.1080/00032719.2019.1663528

Luo, X., Zhao, X., Wallace, G. Q., Brunet, M.-H., Wilkinson, K. J., Wu, P., Cai, C., Bazuin, C. G., & Masson, J.-F. (2021). Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core–Satellite Assemblies. ACS Applied Materials & Interfaces, 13(5), 6545–6556. https://doi.org/10.1021/acsami.0c21493

Miao, Y., Gao, Q., Mao, M., Zhang, C., Yang, L., Yang, Y., & Han, D. (2021). Bispecific Aptamer Chimeras Enable Targeted Protein Degradation on Cell Membranes. Angewandte Chemie International Edition, 60(20), 11267–11271. https://doi.org/10.1002/anie.202102170

Ni, S., Zhuo, Z., Pan, Y., Yu, Y., Li, F., Liu, J., Wang, L., Wu, X., Li, D., Wan, Y., Zhang, L., Yang, Z., Zhang, B.-T., Lu, A., & Zhang, G. (2021). Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Applied Materials & Interfaces, 13(8), 9500–9519. https://doi.org/10.1021/acsami.0c05750

Ouyang, Y., Fadeev, M., Zhang, P., Carmieli, R., Li, J., Sohn, Y. S., Karmi, O., Nechushtai, R., Pikarsky, E., Fan, C., & Willner, I. (2022). Aptamer-Modified Au Nanoparticles: Functional Nanozyme Bioreactors for Cascaded Catalysis and Catalysts for Chemodynamic Treatment of Cancer Cells. ACS Nano, 16(11), 18232–18243. https://doi.org/10.1021/acsnano.2c05710

Pan, Q., Nie, C., Hu, Y., Yi, J., Liu, C., Zhang, J., He, M., He, M., Chen, T., & Chu, X. (2020). Aptamer-Functionalized DNA Origami for Targeted Codelivery of Antisense Oligonucleotides and Doxorubicin to Enhance Therapy in Drug-Resistant Cancer Cells. ACS Applied Materials & Interfaces, 12(1), 400–409. https://doi.org/10.1021/acsami.9b20707

Qi, L., Liu, S., Jiang, Y., Lin, J.-M., Yu, L., & Hu, Q. (2020). Simultaneous Detection of Multiple Tumor Markers in Blood by Functional Liquid Crystal Sensors Assisted with Target-Induced Dissociation of Aptamer. Analytical Chemistry, 92(5), 3867–3873. https://doi.org/10.1021/acs.analchem.9b05317

Ranganathan, V., Srinivasan, S., Singh, A., & DeRosa, M. C. (2020). An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Analytical Biochemistry, 588, 113471. https://doi.org/10.1016/j.ab.2019.113471

Shaver, A., Curtis, S. D., & Arroyo-Currás, N. (2020). Alkanethiol Monolayer End Groups Affect the Long-Term Operational Stability and Signaling of Electrochemical, Aptamer-Based Sensors in Biological Fluids. ACS Applied Materials & Interfaces, 12(9), 11214–11223. https://doi.org/10.1021/acsami.9b22385

Sun, M., Liu, S., Wei, X., Wan, S., Huang, M., Song, T., Lu, Y., Weng, X., Lin, Z., Chen, H., Song, Y., & Yang, C. (2021). Aptamer Blocking Strategy Inhibits SARS?CoV?2 Virus Infection. Angewandte Chemie International Edition, 60(18), 10266–10272. https://doi.org/10.1002/anie.202100225

Wu, D., Yu, Y., Jin, D., Xiao, M.-M., Zhang, Z.-Y., & Zhang, G.-J. (2020). Dual-Aptamer Modified Graphene Field-Effect Transistor Nanosensor for Label-Free and Specific Detection of Hepatocellular Carcinoma-Derived Microvesicles. Analytical Chemistry, 92(5), 4006–4015. https://doi.org/10.1021/acs.analchem.9b05531

Xiao, D., Li, Y., Tian, T., Zhang, T., Shi, S., Lu, B., Gao, Y., Qin, X., Zhang, M., Wei, W., & Lin, Y. (2021). Tetrahedral Framework Nucleic Acids Loaded with Aptamer AS1411 for siRNA Delivery and Gene Silencing in Malignant Melanoma. ACS Applied Materials & Interfaces, 13(5), 6109–6118. https://doi.org/10.1021/acsami.0c23005

Yan, J., Gao, T., Lu, Z., Yin, J., Zhang, Y., & Pei, R. (2021). Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS Applied Materials & Interfaces, 13(24), 27749–27773. https://doi.org/10.1021/acsami.1c06818

Yang, L., Yin, X., An, B., & Li, F. (2021). Precise Capture and Direct Quantification of Tumor Exosomes via a Highly Efficient Dual-Aptamer Recognition-Assisted Ratiometric Immobilization-Free Electrochemical Strategy. Analytical Chemistry, 93(3), 1709–1716. https://doi.org/10.1021/acs.analchem.0c04308

Yang, M., Chen, X., Zhu, L., Lin, S., Li, C., Li, X., Huang, K., & Xu, W. (2021). Aptamer-Functionalized DNA–Silver Nanocluster Nanofilm for Visual Detection and Elimination of Bacteria. ACS Applied Materials & Interfaces, 13(32), 38647–38655. https://doi.org/10.1021/acsami.1c05751

Yang, Y., Sun, X., Xu, J., Cui, C., Safari Yazd, H., Pan, X., Zhu, Y., Chen, X., Li, X., Li, J., & Tan, W. (2020). Circular Bispecific Aptamer-Mediated Artificial Intercellular Recognition for Targeted T Cell Immunotherapy. ACS Nano, 14(8), 9562–9571. https://doi.org/10.1021/acsnano.9b09884

Yang, Z., Zhao, T., Gao, C., Cao, F., Li, H., Liao, Z., Fu, L., Li, P., Chen, W., Sun, Z., Jiang, S., Tian, Z., Tian, G., Zha, K., Pan, T., Li, X., Sui, X., Yuan, Z., Liu, S., & Guo, Q. (2021). 3D-Bioprinted Difunctional Scaffold for In Situ Cartilage Regeneration Based on Aptamer-Directed Cell Recruitment and Growth Factor-Enhanced Cell Chondrogenesis. ACS Applied Materials & Interfaces, 13(20), 23369–23383. https://doi.org/10.1021/acsami.1c01844

Yu, H., Alkhamis, O., Canoura, J., Liu, Y., & Xiao, Y. (2021). Advances and Challenges in Small?Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angewandte Chemie International Edition, 60(31), 16800–16823. https://doi.org/10.1002/anie.202008663

Zhao, X., Luo, C., Mei, Q., Zhang, H., Zhang, W., Su, D., Fu, W., & Luo, Y. (2020). Aptamer-Cholesterol-Mediated Proximity Ligation Assay for Accurate Identification of Exosomes. Analytical Chemistry, 92(7), 5411–5418. https://doi.org/10.1021/acs.analchem.0c00141

Zhou, Z., Sohn, Y. S., Nechushtai, R., & Willner, I. (2020). DNA Tetrahedra Modules as Versatile Optical Sensing Platforms for Multiplexed Analysis of miRNAs, Endonucleases, and Aptamer–Ligand Complexes. ACS Nano, 14(7), 9021–9031. https://doi.org/10.1021/acsnano.0c04031

Zhou, Z., Xiao, R., Cheng, S., Wang, S., Shi, L., Wang, C., Qi, K., & Wang, S. (2021). A universal SERS-label immunoassay for pathogen bacteria detection based on Fe3O4@Au-aptamer separation and antibody-protein A orientation recognition. Analytica Chimica Acta, 1160, 338421. https://doi.org/10.1016/j.aca.2021.338421

Zhu, A., Jiao, T., Ali, S., Xu, Y., Ouyang, Q., & Chen, Q. (2021). SERS Sensors Based on Aptamer-Gated Mesoporous Silica Nanoparticles for Quantitative Detection of Staphylococcus aureus with Signal Molecular Release. Analytical Chemistry, 93(28), 9788–9796. https://doi.org/10.1021/acs.analchem.1c01280

Authors

Sofia Lim
sofialim@gmail.com (Primary Contact)
Marcus Tan
Ethan Tan
Lim, S., Tan, M., & Tan, E. (2024). Development of an Aptamer-Based Electrochemical Biosensor for Early Detection of Prostate Cancer Markers. Journal of Biomedical and Techno Nanomaterials, 1(4), 196–126. https://doi.org/10.70177/jbtn.v1i4.1811

Article Details

Most read articles by the same author(s)