The Impact of Implementing Game-Based Learning on Student Motivation and Engagement
Abstract
Background:The implementation of game-based learning is an inclusive learninggame elements into an educational context. These game elements will produce a more dynamic and interesting learning experience. This interesting interactive experience encourages students to become more involved, thereby fostering a strong desire to understand and master the learning material.
Research purposes:This research was conducted with the aim of understanding the relationship between the implementation of game-based learning and student motivation and engagement. Apart from that, it also aims to find out the challenges of implementing game-based learning.
Method:The method used in this research is a quantitative method.This method is a way of collecting numerical data that can be tested. Data was collected through distributing questionnaires addressed to students. Furthermore, the data that has been collected from the results of distributing the questionnaire will be accessible in Excel format which can then be processed using SPSS.
Results:From the research results, it can be seen that game-based learning is something that has become a trend in the world of education.By adapting technology to game-based learning, education can become more relevant and dynamic, and students' diverse learning styles can be accepted.
Conclusion:From this research, researchers can conclude that the impact of implementing game-based learning,can encourage students to participate more actively in the learning process. So that student motivation and involvement becomes higher in the learning process.
Full text article
References
Appova, A., & Arbaugh, F. (2018). Teachers' motivation to learn: Implications for supporting professional growth. Professional Development in Education, 44(1), 5–21.https://doi.org/10.1080/19415257.2017.1280524
Authors/Task Force Members:, McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., Burri, H., Butler, J., ?elutkien?, J., Chioncel, O., Cleland, JGF, Coats, AJS, Crespo?Leiro, MG, Farmakis, D., Gilard, M., Heymans, S., Hoes, AW, Jaarsma, T., … ESC Scientific Document Group. (2022). 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure, 24(1), 4–131.https://doi.org/10.1002/ejhf.2333
Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., Schmidt, A.L., Valensise, C.M., Scala, A., Quattrociocchi, W., & Pammolli , F. (2020). Economic and social consequences of human mobility restrictions under COVID-19. Proceedings of the National Academy of Sciences, 117(27), 15530–15535.https://doi.org/10.1073/pnas.2007658117
Canavese, G., Ancona, A., Racca, L., Canta, M., Dumontel, B., Barbaresco, F., Limongi, T., & Cauda, V. (2018). Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chemical Engineering Journal, 340, 155–172.https://doi.org/10.1016/j.cej.2018.01.060
Chen, Y., Guo, R., Peng, X., Wang, X., Liu, Wu, Y., & Luo, J. (2020). Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites. ACS Nano, 14(6), 6938–6946.https://doi.org/10.1021/acsnano.0c01340
Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., & Sindhya, K. (2018). A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 22(1), 129–142.https://doi.org/10.1109/TEVC.2016.2622301
Gaia Collaboration, Brown, AGA, Vallenari, A., Prusti, T., De Bruijne, JHJ, Babusiaux, C., Bailer-Jones, CAL, Biermann, M., Evans, DW, Eyer, L., Jansen, F ., Jordi, C., Klioner, S.A., Lammers, U., Lindegren, L., Luri, X., Mignard, F., Panem, C., Pourbaix, D., … Zwitter, T. (2018). Gaia Data Release 2: Summary of the contents and survey properties. Astronomy & Astrophysics, 616, A1.https://doi.org/10.1051/0004-6361/201833051
Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78–94.https://doi.org/10.1016/j.knosys.2018.03.022
Greczynski, G., & Hultman, L. (2020). Compromising Science by Ignorant Instrument Calibration—Need to Revisit Half a Century of Published XPS Data. Angewandte Chemie International Edition, 59(13), 5002–5006.https://doi.org/10.1002/anie.201916000
Grimes, M. G. (2018). The Pivot: How Founders Respond to Feedback through Idea and Identity Work. Academy of Management Journal, 61(5), 1692–1717.https://doi.org/10.5465/amj.2015.0823
Hu, C., Zhang, L., & Gong, J. (2019). Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy & Environmental Science, 12(9), 2620–2645.https://doi.org/10.1039/C9EE01202H
King, G., & Nielsen, R. (2019). Why Propensity Scores Should Not Be Used for Matching. Political Analysis, 27(4), 435–454.https://doi.org/10.1017/pan.2019.11
Klein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens, H., & Laxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences, 115(15).https://doi.org/10.1073/pnas.1717295115
Li, Y., & Xie, Y. (2020). Is a Picture Worth a Thousand Words? An Empirical Study of Image Content and Social Media Engagement. Journal of Marketing Research, 57(1), 1–19.https://doi.org/10.1177/0022243719881113
Liu, J., Chen, C., Liu, Z., Jermsittiparsert, K., & Ghadimi, N. (2020). An IGDT-based risk-involved optimal bidding strategy for hydrogen storage-based intelligent parking lot of electric vehicles. Journal of Energy Storage, 27, 101057.https://doi.org/10.1016/j.est.2019.101057
Ma, X., Wu, X., Wang, H., & Wang, Y. (2018). A Janus MoSSe monolayer: A potential wide solar-spectrum water-splitting photocatalyst with a low carrier recombination rate. Journal of Materials Chemistry A, 6(5), 2295–2301.https://doi.org/10.1039/C7TA10015A
Oulahou, Y., Elguennouni, Y., Hssikou, M., Baliti, J., & Alaoui, M. (2023). Theoretical Examination of the Volume Concentration and Nanoparticles Density Influence on the Convective Heat Transfer Enhancement of Nanofluid in 2D Cavity Including the Square Heater. Problems of the Regional Energetics, 4(60), 55–70.https://doi.org/10.52254/1857-0070.2023.4-60.05
Perkovic, V., Jardine, MJ, Neal, B., Bompoint, S., Heerspink, HJL, Charytan, D.M., Edwards, R., Agarwal, R., Bakris, G., Bull, S., Cannon, C.P. , Capuano, G., Chu, P.-L., De Zeeuw, D., Greene, T., Levin, A., Pollock, C., Wheeler, D.C., Yavin, Y., … Mahaffey, K.W. (2019 ). Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 380(24), 2295–2306.https://doi.org/10.1056/NEJMoa1811744
Piñero, J., Ramírez-Anguita, J.M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F., & Furlong, L.I. (2019). The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Research, gkz1021.https://doi.org/10.1093/nar/gkz1021
Reckien, D., Salvia, M., Heidrich, O., Church, J.M., Pietrapertosa, F., De Gregorio-Hurtado, S., D'Alonzo, V., Foley, A., Simoes, S.G., Krkoška Lorencová , E., Orru, H., Orru, K., Wejs, A., Flacke, J., Olazabal, M., Geneletti, D., Feliu, E., Vasilie, S., Nador, C., … Dawson, R. (2018). How are cities planned to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. Journal of Cleaner Production, 191, 207–219.https://doi.org/10.1016/j.jclepro.2018.03.220
Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationship to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135.https://doi.org/10.1080/00207543.2018.1533261
Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., & Rabczuk, T. (2020). An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 362, 112790.https://doi.org/10.1016/j.cma.2019.112790
Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26.https://doi.org/10.1016/j.cemconres.2018.03.015
Shen, H., Li, F., Xu, S., & Sreeram, V. (2018). Slow State Variables Feedback Stabilization for Semi-Markov Jump Systems With Singular Perturbations. IEEE Transactions on Automatic Control, 63(8), 2709–2714.https://doi.org/10.1109/TAC.2017.2774006
Singh, J. A., Yu, S., Chen, L., & Cleveland, J. D. (2019). Rates of Total Joint Replacement in the United States: Future Projections to 2020–2040 Using the National Inpatient Sample. The Journal of Rheumatology, 46(9), 1134–1140.https://doi.org/10.3899/jrheum.170990
Singh, S.K., Giudice, M.D., Chierici, R., & Graziano, D. (2020). Green innovation and environmental performance: The role of green transformational leadership and green human resource management. Technological Forecasting and Social Change, 150, 119762.https://doi.org/10.1016/j.techfore.2019.119762
Teece, D.J. (2018). Business models and dynamic capabilities. Long Range Planning, 51(1), 40–49.https://doi.org/10.1016/j.lrp.2017.06.007
The STARRT-AKI Investigators. (2020). Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. New England Journal of Medicine, 383(3), 240–251.https://doi.org/10.1056/NEJMoa2000741
Treibel, T.A., Kozor, R., Schofield, R., Benedetti, G., Fontana, M., Bhuva, A.N., Sheikh, A., López, B., González, A., Manisty, C., Lloyd, G., Kellman, P., Díez, J., & Moon, J. C. (2018). Reverse Myocardial Remodeling Following Valve Replacement in Patients With Aortic Stenosis. Journal of the American College of Cardiology, 71(8), 860–871.https://doi.org/10.1016/j.jacc.2017.12.035
Tushar, W., Yuen, C., Mohsenian-Rad, H., Saha, T., Poor, H. V., & Wood, K. L. (2018). Transforming Energy Networks via Peer-to-Peer Energy Trading: The Potential of Game-Theoretic Approaches. IEEE Signal Processing Magazine, 35(4), 90–111.https://doi.org/10.1109/MSP.2018.2818327
US Preventive Services Task Force, Curry, SJ, Krist, AH, Owens, DK, Barry, MJ, Caughey, AB, Davidson, KW, Doubeni, CA, Epling, JW, Kemper, AR, Kubik, M., Landefeld, CS , Mangione, C.M., Phipps, M.G., Silverstein, M., Simon, M.A., Tseng, C.-W., & Wong, J.B. (2018). Screening for Cervical Cancer: US Preventive Services Task Force Recommendation Statement. JAMA, 320(7), 674.https://doi.org/10.1001/jama.2018.10897
Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., Xia, E., Lu, Y., Tai, Y., She, G., Sun, J., Cao, H., Tong, W., Gao, Q., Li, Y., Deng, W., Jiang, X., Wang, W., Chen, Q., … Wan, X. (2018). Draft genome sequence of Camellia sinensis var. Sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences, 115(18).https://doi.org/10.1073/pnas.1719622115
Wu, Q., Zeng, Y., & Zhang, R. (2018). Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks. IEEE Transactions on Wireless Communications, 17(3), 2109–2121. https://doi.org/10.1109/TWC.2017.2789293
Zhang, M., Sun, C.-N., Zhang, X., Goh, P.C., Wei, J., Hardacre, D., & Li, H. (2019). High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. International Journal of Fatigue, 128, 105194.https://doi.org/10.1016/j.ijfatigue.2019.105194
Zhang, Q., Bastard, P., Liu, Z., Le Pen, J., Moncada-Velez, M., Chen, J., Ogishi, M., Sabli, IKD, Hodeib, S., Korol, C ., Rosain, J., Bilguvar, K., Ye, J., Bolze, A., Bigio, B., Yang, R., Arias, A.A., Zhou, Q., Zhang, Y., … Zhang, . (2020). Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 370(6515), eabd4570.https://doi.org/10.1126/science.abd4570
Authors
Copyright (c) 2024 Ika Agustina, Julanons Jolanons

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.