AI-Assisted Personalized Vaccine Design Using Multi-Omics Cancer Data

Khalil Zaman (1), Shazia Akhtar (2), Sofia Lim (3), Ardi Azhar Nampira (4)
(1) Mazar University, Afghanistan,
(2) Nangarhar University, Afghanistan,
(3) Singapore University of Technology and Design (SUTD), Singapore,
(4) Institute Teknologi Sepuluh November, Indonesia

Abstract

The development of personalized cancer vaccines represents a promising frontier in oncology, yet traditional approaches struggle with the complexity and volume of multi-omics data. This study addresses this challenge by introducing an AI-assisted framework for the design of personalized vaccines. The primary objective was to leverage machine learning models to identify and prioritize neoantigens from integrated genomic, transcriptomic, and proteomic data of cancer patients. The methodology involved a deep learning pipeline to analyze multi-omics datasets, predicting tumor-specific mutations and their immunogenicity. This was followed by an algorithm to select the most potent neoantigen peptides for vaccine formulation, optimizing for both MHC binding affinity and T-cell activation potential. Our results demonstrate that the AI-driven approach significantly improved the speed and accuracy of neoantigen identification compared to conventional methods. The framework successfully predicted a set of high-quality vaccine candidates for individual patients, which showed strong in silico binding to patient-specific MHC molecules. We conclude that this AI-assisted methodology provides a powerful and scalable solution for personalized vaccine design, accelerating the translation of multi-omics data into clinically actionable immunotherapies.


 

Full text article

Generated from XML file

References

Al-Dabbas, M. (2024). Some Aspects of the Environment and Biodiversity in Iraq. In World. Reg. Geogr. Book. Ser.: Vol. Part F3527 (pp. 145–169). Springer Nature; Scopus. https://doi.org/10.1007/978-3-031-71356-9_7

Behera, S., & Rout, S. (2025). Shifting Cultivation—A Way of Life of Kandhas of Kandhamal: Is it Under Threat? Oriental Anthropologist, 25(1), 121–138. Scopus. https://doi.org/10.1177/0972558X241313198

Borges, S. L., Cardoso Ferreira, M., Machado Teles Walter, B., dos Santos, A. C., Osni Scariot, A., & Belloni Schmidt, I. (2023). Secondary succession in swamp gallery forests along 65 fallow years after shifting cultivation. Forest Ecology and Management, 529. Scopus. https://doi.org/10.1016/j.foreco.2022.120671

Brož, P., H?la, J., Novák, P., Edrová, J., Korba, J., & Novák, V. (2022). SOIL EROSION DURING SECONDARY TILLAGE. In Herak D. (Ed.), TAE - Proc. Int. Conf. Trends Agric. Eng. (pp. 42–49). Czech University of Life Sciences Prague; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172707691&partnerID=40&md5=782a8bd2b9367b79552258b641435e89

Burchfield, E. K. (2022). Shifting cultivation geographies in the Central and Eastern US. Environmental Research Letters, 17(5). Scopus. https://doi.org/10.1088/1748-9326/ac6c3d

Choudhury, B. U., Nengzouzam, G., & Islam, A. (2022). Runoff and soil erosion in the integrated farming systems based on micro-watersheds under projected climate change scenarios and adaptation strategies in the eastern Himalayan mountain ecosystem (India). Journal of Environmental Management, 309. Scopus. https://doi.org/10.1016/j.jenvman.2022.114667

Das, P., Behera, M. D., Barik, S. K., Mudi, S., Jagadish, B., Sarkar, S., Joshi, S. R., Adhikari, D., Behera, S. K., Sarma, K., Srivastava, P. K., & Chauhan, P. S. (2022). Shifting cultivation induced burn area dynamics using ensemble approach in Northeast India. Trees, Forests and People, 7. Scopus. https://doi.org/10.1016/j.tfp.2021.100183

Falkowski, T. B., Chankin, A., Lehmann, J., Drinkwater, L. E., Diemont, S. A. W., & Nigh, R. (2023). Socioecological effects of swidden management in traditional Maya agroforests in the Selva Lacandona of Chiapas, Mexico. Journal of Environmental Management, 341. Scopus. https://doi.org/10.1016/j.jenvman.2023.118035

Fan, K., Liu, P., Mao, P., Yao, J., & Zang, R. (2023). The turnover dynamics of woody plants in a tropical lowland rain forest during recovery following anthropogenic disturbances. Journal of Environmental Management, 342. Scopus. https://doi.org/10.1016/j.jenvman.2023.118371

Feleke, H. G., Savage, M. J., Fantaye, K. T., & Rettie, F. M. (2023). The Role of Crop Management Practices and Adaptation Options to Minimize the Impact of Climate Change on Maize (Zea mays L.) Production for Ethiopia. Atmosphere, 14(3). Scopus. https://doi.org/10.3390/atmos14030497

Ferreira, I., Corrêa, A., & Cruz, C. (2023). Sustainable production of ectomycorrhizal fungi in the Mediterranean region to support the European Green Deal. Plants People Planet, 5(1), 14–26. Scopus. https://doi.org/10.1002/ppp3.10265

Hannon, G. E., Bradshaw, R. H. W., Chiverrell, R. C., & Skovsgaard, J. P. (2024). The history of Fagus sylvatica at its northern limit in Vendsyssel, Denmark. Holocene, 34(7), 967–977. Scopus. https://doi.org/10.1177/09596836241236340

Hauchhum, R., & Lalremsang, P. (2023). Soil Microbial Carbon Pools as an Indicator of Soil Health in Different Land Use Systems of Northeast India. In Soil Carbon Dynamics in Indian Himal. Region (pp. 189–204). Springer Singapore; Scopus. https://doi.org/10.1007/978-981-99-3303-7_10

Kamakaula, Y. (2025). The Impact of Climate Change on Shifting Cultivation Systems: Challenges and Adaptation Strategies. Journal of Neonatal Surgery, 14(2), 52–58. Scopus. https://doi.org/10.52783/jns.v14.1716

King, K., Williams, M., Stinner, J., & Rumora, K. (2024). The LTAR Cropland Common Experiment at Eastern Corn Belt. Journal of Environmental Quality, 53(6), 851–860. Scopus. https://doi.org/10.1002/jeq2.20611

Li, P., Xiao, C., & Feng, Z. (2022). Swidden agriculture in transition and its roles in tropical forest loss and industrial plantation expansion. Land Degradation and Development, 33(2), 388–392. Scopus. https://doi.org/10.1002/ldr.4152

Mishra, A. (2022). Shifting cultivation to sustainability – seeing beyond the smoke. Current Science, 122(10), 1129–1134. Scopus. https://doi.org/10.18520/cs/v122/i10/1129-1134

Mkpuma, V. O., Ishika, T., Moheimani, N. R., & Ennaceri, H. (2023). The potential of coupling wastewater treatment with hydrocarbon production using Botryococcus braunii. Algal Research, 74. Scopus. https://doi.org/10.1016/j.algal.2023.103214

Modak, K., Guru, N., Mishra, G., & Sharma, B. (2024). Role of Traditional Farming Practices of Northeast India in Soil and Water Conservation and Sustainable Nutrient Management. In Sustainable Land Management in India: Opportunities and Challenges (pp. 167–178). Springer Nature; Scopus. https://doi.org/10.1007/978-981-97-5223-2_10

Munna, A. H., Amuri, N. A., Hieronimo, P., & Woiso, D. A. (2023). The right tree in the right place: Predicting and mapping global-scale suitable areas for Marula tree, Sclerocarya birrea, (A. Rich.) Horchst, subspecies cultivation, conservation, and use in restoring global drylands. Frontiers of Biogeography, 15(4). Scopus. https://doi.org/10.21425/F5FBG60181

Praharaj, C. S., Singh, U., & Sultana, R. (2023). Strategic Solutions and Futuristic Challenges for the Cultivation of Food Legumes in India. In Climate Change and Legumes: Stress Mitigation for Sustainability and Food Security (pp. 171–188). CRC Press; Scopus. https://doi.org/10.1201/9781003214885-11

Qamar, R., & Javeed, H. M. R. (2022). Rice Physiology Under Changing Climate. In Modern Techniques of Rice Crop Production (pp. 165–186). wiley; Scopus. https://doi.org/10.1007/978-981-16-4955-4_12

Souza de Paula, A., Sfair, J. C., Trindade, D. P. F., Rito, K. F., Tabarelli, M., & Barros, M. F. (2023). The role of seed rain and soil seed bank in the regeneration of a Caatinga dry forest following slash-and-burn agriculture. Journal of Arid Environments, 211. Scopus. https://doi.org/10.1016/j.jaridenv.2023.104948

Tengsetasak, P., Tongkoom, K., Yomkerd, J., Susawaengsup, C., Khongdee, N., Chatsungnoen, T., Dangtungee, R., & Bhuyar, P. (2024). Sustainable Strategies for Fresh Mangosteen: Adapting to Climate Challenges. Earth Systems and Environment, 8(4), 1829–1847. Scopus. https://doi.org/10.1007/s41748-024-00512-y

Vaglia, V., Bacenetti, J., Orlando, F., Alali, S., Bosso, E., & Bocchi, S. (2022). The environmental impacts of different organic rice management in Italy considering different productive scenarios. Science of the Total Environment, 853. Scopus. https://doi.org/10.1016/j.scitotenv.2022.158365

Varghese, N. (2023). Shift in Land Use Pattern of Thar Desert. In Natural Resource Management in the Thar Desert Region of Rajasthan (pp. 55–71). Springer International Publishing; Scopus. https://doi.org/10.1007/9783031345562_3

Zhao, C., Zhu, W., Guo, H., Chen, L., & Xie, Z. (2022). The impact of Arctic climatic and terrestrial environmental changes on primary industry: A review. Dili Xuebao/Acta Geographica Sinica, 77(11), 2838–2861. Scopus. https://doi.org/10.11821/dlxb202211010

Zhu, Y., Sun, L., Luo, Q., Chen, H., & Yang, Y. (2023). Spatial optimization of cotton cultivation in Xinjiang: A climate change perspective. International Journal of Applied Earth Observation and Geoinformation, 124. Scopus. https://doi.org/10.1016/j.jag.2023.103523

Authors

Khalil Zaman
khalil3@gmail.com (Primary Contact)
Shazia Akhtar
Sofia Lim
Ardi Azhar Nampira
Zaman, K., Akhtar, S., Lim, S., & Nampira, A. A. (2025). AI-Assisted Personalized Vaccine Design Using Multi-Omics Cancer Data. Journal of Biomedical and Techno Nanomaterials, 2(3), 160–175. https://doi.org/10.70177/jbtn.v2i3.2381

Article Details