Design and Fabrication of Microfluidic Biochips for Early Detection of Sexually Transmitted Diseases

Khalil Zaman (1), Omar Khan (2), Jamil Khan (3)
(1) Mazar University, Afghanistan,
(2) Kabul University, Afghanistan,
(3) Jawzjan University, Afghanistan

Abstract

Sexually transmitted diseases (STDs) remain a global health problem that requires early detection and rapid treatment. This study aims to design and fabricate microfluidic biochips for the early detection of several PMS-causing pathogens, such as Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis. This research method involves designing chips with microfluidic technology, fabrication using lithography techniques, and testing the sensitivity and specificity of blood, urine, and cervical fluid samples. The results show that the biochip developed has a sensitivity of up to 92% and a specificity of 95%, with a detection time of less than 10 minutes. The biochip is also capable of detecting a variety of pathogens in a single device, making it an efficient diagnostic tool. In conclusion, this microfluidic biochip has the potential to be a fast, cheap, and effective PMS detection tool for use in the field. Further research needs to be conducted to test the sustainability of chip performance under real-world conditions and for further development in the detection of various other pathogens.


 

Full text article

Generated from XML file

References

Alizadeh, N., Salimi, A., Sham, T.-K., Bazylewski, P., & Fanchini, G. (2020). Intrinsic Enzyme-like Activities of Cerium Oxide Nanocomposite and Its Application for Extracellular H2 O2 Detection Using an Electrochemical Microfluidic Device. ACS Omega, 5(21), 11883–11894. https://doi.org/10.1021/acsomega.9b03252

An, C., Liu, W., Zhang, Y., Pang, B., Liu, H., Zhang, Y., Zhang, H., Zhang, L., Liao, H., Ren, C., & Wang, H. (2020). Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. Acta Biomaterialia, 111, 181–196. https://doi.org/10.1016/j.actbio.2020.05.024

Ardalan, S., Hosseinifard, M., Vosough, M., & Golmohammadi, H. (2020). Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosensors and Bioelectronics, 168, 112450. https://doi.org/10.1016/j.bios.2020.112450

Arduino, I., Liu, Z., Rahikkala, A., Figueiredo, P., Correia, A., Cutrignelli, A., Denora, N., & Santos, H. A. (2021). Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomaterialia, 121, 566–578. https://doi.org/10.1016/j.actbio.2020.12.024

Bruch, R., Johnston, M., Kling, A., Mattmüller, T., Baaske, J., Partel, S., Madlener, S., Weber, W., Urban, G. A., & Dincer, C. (2021). CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics. Biosensors and Bioelectronics, 177, 112887. https://doi.org/10.1016/j.bios.2020.112887

Cao, L., Han, G.-C., Xiao, H., Chen, Z., & Fang, C. (2020). A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Analytica Chimica Acta, 1096, 34–43. https://doi.org/10.1016/j.aca.2019.10.049

Chen, B., Johnson, Z. T., Sanborn, D., Hjort, R. G., Garland, N. T., Soares, R. R. A., Van Belle, B., Jared, N., Li, J., Jing, D., Smith, E. A., Gomes, C. L., & Claussen, J. C. (2022). Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open Microfluidic Environmental Biosensing and Energy Storage Devices. ACS Nano, 16(1), 15–28. https://doi.org/10.1021/acsnano.1c04197

Cheng, Y. H., Barpaga, D., Soltis, J. A., Shutthanandan, V., Kargupta, R., Han, K. S., McGrail, B. P., Motkuri, R. K., Basuray, S., & Chatterjee, S. (2020). Metal–Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate. ACS Applied Materials & Interfaces, 12(9), 10503–10514. https://doi.org/10.1021/acsami.9b22445

Cui, T., Yu, J., Li, Q., Wang, C., Chen, S., Li, W., & Wang, G. (2020). Large?Scale Fabrication of Robust Artificial Skins from a Biodegradable Sealant?Loaded Nanofiber Scaffold to Skin Tissue via Microfluidic Blow?Spinning. Advanced Materials, 32(32), 2000982. https://doi.org/10.1002/adma.202000982

Funari, R., Chu, K.-Y., & Shen, A. Q. (2020). Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip. Biosensors and Bioelectronics, 169, 112578. https://doi.org/10.1016/j.bios.2020.112578

Hur, J., Park, I., Lim, K. M., Doh, J., Cho, S.-G., & Chung, A. J. (2020). Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. ACS Nano, 14(11), 15094–15106. https://doi.org/10.1021/acsnano.0c05169

Kim, J., Wu, Y., Luan, H., Yang, D. S., Cho, D., Kwak, S. S., Liu, S., Ryu, H., Ghaffari, R., & Rogers, J. A. (2022). A Skin?Interfaced, Miniaturized Microfluidic Analysis and Delivery System for Colorimetric Measurements of Nutrients in Sweat and Supply of Vitamins Through the Skin. Advanced Science, 9(2), 2103331. https://doi.org/10.1002/advs.202103331

Koklu, A., Wustoni, S., Musteata, V.-E., Ohayon, D., Moser, M., McCulloch, I., Nunes, S. P., & Inal, S. (2021). Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid-? Detection. ACS Nano, 15(5), 8130–8141. https://doi.org/10.1021/acsnano.0c09893

Lao, Z., Zheng, Y., Dai, Y., Hu, Y., Ni, J., Ji, S., Cai, Z., Smith, Z. J., Li, J., Zhang, L., Wu, D., & Chu, J. (2020). Nanogap Plasmonic Structures Fabricated by Switchable Capillary?Force Driven Self?Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS. Advanced Functional Materials, 30(15), 1909467. https://doi.org/10.1002/adfm.201909467

Li, J., & Lillehoj, P. B. (2021). Microfluidic Magneto Immunosensor for Rapid, High Sensitivity Measurements of SARS-CoV-2 Nucleocapsid Protein in Serum. ACS Sensors, 6(3), 1270–1278. https://doi.org/10.1021/acssensors.0c02561

Li, Z., Zhang, X., Ouyang, J., Chu, D., Han, F., Shi, L., Liu, R., Guo, Z., Gu, G. X., Tao, W., Jin, L., & Li, J. (2021). Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioactive Materials, 6(11), 4053–4064. https://doi.org/10.1016/j.bioactmat.2021.04.014

Lin, Q., Wen, D., Wu, J., Liu, L., Wu, W., Fang, X., & Kong, J. (2020). Microfluidic Immunoassays for Sensitive and Simultaneous Detection of IgG/IgM/Antigen of SARS-CoV-2 within 15 min. Analytical Chemistry, 92(14), 9454–9458. https://doi.org/10.1021/acs.analchem.0c01635

Liu, H., Wang, Y., Wang, H., Zhao, M., Tao, T., Zhang, X., & Qin, J. (2020). A Droplet Microfluidic System to Fabricate Hybrid Capsules Enabling Stem Cell Organoid Engineering. Advanced Science, 7(11), 1903739. https://doi.org/10.1002/advs.201903739

Ouyang, L., Armstrong, J. P. K., Chen, Q., Lin, Y., & Stevens, M. M. (2020). Void?Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion. Advanced Functional Materials, 30(1), 1908349. https://doi.org/10.1002/adfm.201908349

Senel, M., Dervisevic, E., Alhassen, S., Dervisevic, M., Alachkar, A., Cadarso, V. J., & Voelcker, N. H. (2020). Microfluidic Electrochemical Sensor for Cerebrospinal Fluid and Blood Dopamine Detection in a Mouse Model of Parkinson’s Disease. Analytical Chemistry, 92(18), 12347–12355. https://doi.org/10.1021/acs.analchem.0c02032

Tang, Q., Li, X., Lai, C., Li, L., Wu, H., Wang, Y., & Shi, X. (2021). Fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening. Bioactive Materials, 6(1), 169–178. https://doi.org/10.1016/j.bioactmat.2020.07.016

Tayebi, M., Zhou, Y., Tripathi, P., Chandramohanadas, R., & Ai, Y. (2020). Exosome Purification and Analysis Using a Facile Microfluidic Hydrodynamic Trapping Device. Analytical Chemistry, 92(15), 10733–10742. https://doi.org/10.1021/acs.analchem.0c02006

Vinoth, R., Nakagawa, T., Mathiyarasu, J., & Mohan, A. M. V. (2021). Fully Printed Wearable Microfluidic Devices for High-Throughput Sweat Sampling and Multiplexed Electrochemical Analysis. ACS Sensors, 6(3), 1174–1186. https://doi.org/10.1021/acssensors.0c02446

Volk, A. A., Epps, R. W., & Abolhasani, M. (2021). Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation. Advanced Materials, 33(4), 2004495. https://doi.org/10.1002/adma.202004495

Wang, X., Yu, Y., Yang, C., Shao, C., Shi, K., Shang, L., Ye, F., & Zhao, Y. (2021). Microfluidic 3D Printing Responsive Scaffolds with Biomimetic Enrichment Channels for Bone Regeneration. Advanced Functional Materials, 31(40), 2105190. https://doi.org/10.1002/adfm.202105190

Wu, G., Sun, S., Zhu, X., Ma, Z., Zhang, Y., & Bao, N. (2022). Microfluidic Fabrication of Hierarchical?Ordered ZIF?L(Zn)@Ti3 C2 T x Core–Sheath Fibers for High?Performance Asymmetric Supercapacitors. Angewandte Chemie International Edition, 61(8), e202115559. https://doi.org/10.1002/anie.202115559

Xie, R., Korolj, A., Liu, C., Song, X., Lu, R. X. Z., Zhang, B., Ramachandran, A., Liang, Q., & Radisic, M. (2020). h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier. ACS Central Science, 6(6), 903–912. https://doi.org/10.1021/acscentsci.9b01097

Xu, J., Liao, D., Gupta, M., Zhu, Y., Zhuang, S., Singh, R., & Chen, L. (2021). Terahertz Microfluidic Sensing with Dual?Torus Toroidal Metasurfaces. Advanced Optical Materials, 9(15), 2100024. https://doi.org/10.1002/adom.202100024

Xue, L., Jin, N., Guo, R., Wang, S., Qi, W., Liu, Y., Li, Y., & Lin, J. (2021). Microfluidic Colorimetric Biosensors Based on MnO2 Nanozymes and Convergence–Divergence Spiral Micromixers for Rapid and Sensitive Detection of Salmonella. ACS Sensors, 6(8), 2883–2892. https://doi.org/10.1021/acssensors.1c00292

Yang, K., Zong, S., Zhang, Y., Qian, Z., Liu, Y., Zhu, K., Li, L., Li, N., Wang, Z., & Cui, Y. (2020). Array-Assisted SERS Microfluidic Chips for Highly Sensitive and Multiplex Gas Sensing. ACS Applied Materials & Interfaces, 12(1), 1395–1403. https://doi.org/10.1021/acsami.9b19358

Yang, L., Sun, L., Zhang, H., Bian, F., & Zhao, Y. (2021). Ice-Inspired Lubricated Drug Delivery Particles from Microfluidic Electrospray for Osteoarthritis Treatment. ACS Nano, 15(12), 20600–20606. https://doi.org/10.1021/acsnano.1c09325

Yao, X., Zhu, G., Zhu, P., Ma, J., Chen, W., Liu, Z., & Kong, T. (2020). Omniphobic ZIF?8@Hydrogel Membrane by Microfluidic?Emulsion?Templating Method for Wound Healing. Advanced Functional Materials, 30(13), 1909389. https://doi.org/10.1002/adfm.201909389

Zhang, H., Chen, G., Yu, Y., Guo, J., Tan, Q., & Zhao, Y. (2020). Microfluidic Printing of Slippery Textiles for Medical Drainage around Wounds. Advanced Science, 7(16), 2000789. https://doi.org/10.1002/advs.202000789

Zhang, J., Lin, B., Wu, L., Huang, M., Li, X., Zhang, H., Song, J., Wang, W., Zhao, G., Song, Y., & Yang, C. (2020). DNA Nanolithography Enables a Highly Ordered Recognition Interface in a Microfluidic Chip for the Efficient Capture and Release of Circulating Tumor Cells. Angewandte Chemie International Edition, 59(33), 14115–14119. https://doi.org/10.1002/anie.202005974

Zhang, L., Chen, Q., Ma, Y., & Sun, J. (2020). Microfluidic Methods for Fabrication and Engineering of Nanoparticle Drug Delivery Systems. ACS Applied Bio Materials, 3(1), 107–120. https://doi.org/10.1021/acsabm.9b00853

Zhao, Y., Zeng, D., Yan, C., Chen, W., Ren, J., Jiang, Y., Jiang, L., Xue, F., Ji, D., Tang, F., Zhou, M., & Dai, J. (2020). Rapid and accurate detection of Escherichia coli O157:H7 in beef using microfluidic wax-printed paper-based ELISA. The Analyst, 145(8), 3106–3115. https://doi.org/10.1039/D0AN00224K

Zhao, Z., Li, G., Ruan, H., Chen, K., Cai, Z., Lu, G., Li, R., Deng, L., Cai, M., & Cui, W. (2021). Capturing Magnesium Ions via Microfluidic Hydrogel Microspheres for Promoting Cancellous Bone Regeneration. ACS Nano, 15(8), 13041–13054. https://doi.org/10.1021/acsnano.1c02147

Zhuang, J., Zhao, Z., Lian, K., Yin, L., Wang, J., Man, S., Liu, G., & Ma, L. (2022). SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods. Biosensors and Bioelectronics, 207, 114167. https://doi.org/10.1016/j.bios.2022.114167

Authors

Khalil Zaman
khalilzaman@gmail.com (Primary Contact)
Omar Khan
Jamil Khan
Zaman, K., Khan, O., & Khan, J. (2024). Design and Fabrication of Microfluidic Biochips for Early Detection of Sexually Transmitted Diseases. Journal of Biomedical and Techno Nanomaterials, 1(4), 153–163. https://doi.org/10.70177/jbtn.v1i4.1761

Article Details