The Essence of Pancasila as the Foundation and Ideology of the State: The Values of Pancasila
Abstract
Background. Pancasila is the basic ideology of the Indonesian nation. Pancasila consists of two Sanskrit words: panca which means five and sila which means principle.
Purpose. The purpose of this research is that Pancasila itself is a settlement and guidelines for the life of the nation and the state of selirih Indonesian citizens.
Method. Data was obtained by giving teacher performance scales, teacher digital literacy, and online learning implementation scales.
Results. Here are the five precepts that are in the body of Pancasila, namely: divinity that is the one, fair and civilized humanity, Indonesian unity, democracy led by wisdom and wisdom in representative deliberation, social justice for all Indonesian people. The application of Pancasila must be familiarized from an early age, either through the family or community environment in order to create a safe and peaceful and prosperous environment. In the third precept, it is clear about unity in Indonesia, but there are still many Indonesians who ignore this precept.
Conclusion. Of course this case is very detrimental to those who become victims of racism, this action greatly affects a person's mentality for that we as Indonesians must emphasize the values of Pancasila to prevent such cases.
Full text article
References
Andra, A., Dylan, M., & Alon, F. (2023). Efforts of Guidance Counseling Teachers in Handling Students: High School Level. International Journal of Educational Narratives, 1(1), 22–27. https://doi.org/10.55849/ijen.v1i1.242
Bai, S., Da, P., Li, C., Wang, Z., Yuan, Z., Fu, F., Kawecki, M., Liu, X., Sakai, N., Wang, J. T.-W., Huettner, S., Buecheler, S., Fahlman, M., Gao, F., & Snaith, H. J. (2019). Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 571(7764), 245–250. https://doi.org/10.1038/s41586-019-1357-2
Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103168. https://doi.org/10.1016/j.im.2019.05.003
Carter, L. J., Garner, L. V., Smoot, J. W., Li, Y., Zhou, Q., Saveson, C. J., Sasso, J. M., Gregg, A. C., Soares, D. J., Beskid, T. R., Jervey, S. R., & Liu, C. (2020). Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Central Science, 6(5), 591–605. https://doi.org/10.1021/acscentsci.0c00501
Chen, C., Kuang, Y., & Hu, L. (2019). Challenges and Opportunities for Solar Evaporation. Joule, 3(3), 683–718. https://doi.org/10.1016/j.joule.2018.12.023
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008
Di Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., Mota, D. F., Riess, A. G., & Silk, J. (2021). In the realm of the Hubble tension—A review of solutions *. Classical and Quantum Gravity, 38(15), 153001. https://doi.org/10.1088/1361-6382/ac086d
Fang, G., Zhu, C., Chen, M., Zhou, J., Tang, B., Cao, X., Zheng, X., Pan, A., & Liang, S. (2019). Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High?Energy?Density and Durable Aqueous Zinc?Ion Battery. Advanced Functional Materials, 29(15), 1808375. https://doi.org/10.1002/adfm.201808375
Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). SlowFast Networks for Video Recognition. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 6201–6210. https://doi.org/10.1109/ICCV.2019.00630
Fraga, C. G., Croft, K. D., Kennedy, D. O., & Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2), 514–528. https://doi.org/10.1039/C8FO01997E
Hampson, D. P., Schuelke, J. S., & Quirein, J. A. (2001). Use of multiattribute transforms to predict log properties from seismic data. GEOPHYSICS, 66(1), 220–236. https://doi.org/10.1190/1.1444899
Ibtehaz, N., & Rahman, M. S. (2020). MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 121, 74–87. https://doi.org/10.1016/j.neunet.2019.08.025
Johanna, A., Avinash, B., & Bevoor, B. (2023). Small Group Discussion Method to Increase Learning Activity: Its Implementation in Education. International Journal of Educational Narratives, 1(1), 18–21. https://doi.org/10.55849/ijen.v1i1.237
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and Improving the Image Quality of StyleGAN. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8107–8116. https://doi.org/10.1109/CVPR42600.2020.00813
Kim, M., Jeong, J., Lu, H., Lee, T. K., Eickemeyer, F. T., Liu, Y., Choi, I. W., Choi, S. J., Jo, Y., Kim, H.-B., Mo, S.-I., Kim, Y.-K., Lee, H., An, N. G., Cho, S., Tress, W. R., Zakeeruddin, S. M., Hagfeldt, A., Kim, J. Y., … Kim, D. S. (2022). Conformal quantum dot–SnO 2 layers as electron transporters for efficient perovskite solar cells. Science, 375(6578), 302–306. https://doi.org/10.1126/science.abh1885
Kurniawan, N., Limei, S., & Catherine, S. (2023). Improving Students Islamic Behavior through Teacher Prophetic Education Model. International Journal of Educational Narratives, 1(1), 28–32. https://doi.org/10.55849/ijen.v1i1.239
Li, L., Zhang, W., Hu, Y., Tong, X., Zheng, S., Yang, J., Kong, Y., Ren, L., Wei, Q., Mei, H., Hu, C., Tao, C., Yang, R., Wang, J., Yu, Y., Guo, Y., Wu, X., Xu, Z., Zeng, L., … Liu, Z. (2020). Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA, 324(5), 460. https://doi.org/10.1001/jama.2020.10044
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9
Peery, A. F., Crockett, S. D., Murphy, C. C., Lund, J. L., Dellon, E. S., Williams, J. L., Jensen, E. T., Shaheen, N. J., Barritt, A. S., Lieber, S. R., Kochar, B., Barnes, E. L., Fan, Y. C., Pate, V., Galanko, J., Baron, T. H., & Sandler, R. S. (2019). Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology, 156(1), 254-272.e11. https://doi.org/10.1053/j.gastro.2018.08.063
Putri, L. R., Vera, A., & Visconte, A. (2023). Quraish Shihab and Buya Hamka: The Concept of Multicultural Education from a Qur’anic Perspective. International Journal of Educational Narratives, 1(1), 1–17. https://doi.org/10.55849/ijen.v1i1.236
Susanti, R., Tariq, K., & Carmelo, D. (2023). Strategic Management of Madrasah Heads in Improving The Quality of Language Learning Arabic in Islamic Educational Institutions. International Journal of Educational Narratives, 1(1), 33–42. https://doi.org/10.55849/ijen.v1i1.231
Wen, L., Gao, L., & Li, X. (2019). A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(1), 136–144. https://doi.org/10.1109/TSMC.2017.2754287
Zhong, M., Tran, K., Min, Y., Wang, C., Wang, Z., Dinh, C.-T., De Luna, P., Yu, Z., Rasouli, A. S., Brodersen, P., Sun, S., Voznyy, O., Tan, C.-S., Askerka, M., Che, F., Liu, M., Seifitokaldani, A., Pang, Y., Lo, S.-C., … Sargent, E. H. (2020). Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 581(7807), 178–183. https://doi.org/10.1038/s41586-020-2242-8
Authors
Copyright (c) 2023 Siti Zahra Maulida, Murphy Xavier, McCarty Elliot

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.