Post-Harvest Storage and Processing Technology in Russia: Reducing Yield Loss

Gareev Ozal (1), Chekhonin Ilyasova (2), Vladimir Ilgiz (3)
(1) Immanuel Kant Baltic Federal University, Russian Federation,
(2) Immanuel Kant Baltic Federal University, Russian Federation,
(3) Immanuel Kant Baltic Federal University, Russian Federation

Abstract

The background of the study is based on the high rate of postharvest agricultural yield loss in Russia, which has had a significant impact on the country's food security and agrarian economy. This yield loss is due to the need for adequate storage and processing technology, thereby shortening the shelf life of farm products and degrading the quality of the crop. This study aims to evaluate the effectiveness of various postharvest storage and processing technologies in reducing agricultural yield losses in Russia. This research method uses a quantitative approach with primary and secondary data collection. Primary data were obtained through surveys and interviews with farmers and agronomists in different agricultural regions of Russia. Secondary data are collected from official reports, scientific journals, and related publications. Data analysis was carried out using statistical techniques to measure the impact of storage and processing technologies on yield loss rates and the quality of agricultural products. The results showed that applying cold storage, drying, and vacuum packaging technologies significantly reduced agricultural yield losses by up to 30% compared to conventional methods. In addition, this technology also improves the quality and shelf life of agricultural products, thereby expanding market reach and increasing farmers' incomes. The study also found that adopting this technology still needs to be improved in some areas due to a lack of knowledge and high initial investment. The study's conclusion shows that postharvest storage and processing technologies have great potential to reduce agricultural yield losses in Russia. To achieve maximum benefits, awareness-raising and training for farmers and investment support from the government and the private sector are needed. Thus, the application of this technology can contribute significantly to food security and the improvement of the welfare of farmers in Russia.

Full text article

Generated from XML file

References

Abol-Fotouh, D., Dörling, B., Zapata-Arteaga, O., Rodríguez-Martínez, X., Gómez, A., Reparaz, J. S., Laromaine, A., Roig, A., & Campoy-Quiles, M. (2019). Farming thermoelectric paper. Energy & Environmental Science, 12(2), 716–726. https://doi.org/10.1039/C8EE03112F

Afridi, M. S., Ali, S., Salam, A., César Terra, W., Hafeez, A., Sumaira, Ali, B., S. AlTami, M., Ameen, F., Ercisli, S., Marc, R. A., Medeiros, F. H. V., & Karunakaran, R. (2022). Plant Microbiome Engineering: Hopes or Hypes. Biology, 11(12), 1782. https://doi.org/10.3390/biology11121782

Alavaisha, E., Manzoni, S., & Lindborg, R. (2019). Different agricultural practices affect soil carbon, nitrogen and phosphorous in Kilombero -Tanzania. Journal of Environmental Management, 234, 159–166. https://doi.org/10.1016/j.jenvman.2018.12.039

Attia, Z. I., Noseworthy, P. A., Lopez-Jimenez, F., Asirvatham, S. J., Deshmukh, A. J., Gersh, B. J., Carter, R. E., Yao, X., Rabinstein, A. A., Erickson, B. J., Kapa, S., & Friedman, P. A. (2019). An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. The Lancet, 394(10201), 861–867. https://doi.org/10.1016/S0140-6736(19)31721-0

Avgoustaki, D. D., & Xydis, G. (2020). Plant factories in the water-food-energy Nexus era: A systematic bibliographical review. Food Security, 12(2), 253–268. https://doi.org/10.1007/s12571-019-01003-z

Beacham, A. M., Vickers, L. H., & Monaghan, J. M. (2019). Vertical farming: A summary of approaches to growing skywards. The Journal of Horticultural Science and Biotechnology, 94(3), 277–283. https://doi.org/10.1080/14620316.2019.1574214

Beavers, A. W., Kennedy, A. O., Blake, J. P., & Comstock, S. S. (2024). Development and evaluation of food preservation lessons for gardeners: Application of the DESIGN process. Public Health Nutrition, 27(1), e23. https://doi.org/10.1017/S1368980023002926

Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., & Zomaya, A. Y. (2020). Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence. IEEE Internet of Things Journal, 7(8), 7457–7469. https://doi.org/10.1109/JIOT.2020.2984887

Dwivedi, Y. K. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57(Query date: 2024-05-23 12:51:03). https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Fountas, S., Mylonas, N., Malounas, I., Rodias, E., Hellmann Santos, C., & Pekkeriet, E. (2020). Agricultural Robotics for Field Operations. Sensors, 20(9), 2672. https://doi.org/10.3390/s20092672

Goel, R. K., Yadav, C. S., Vishnoi, S., & Rastogi, R. (2021). Smart agriculture – Urgent need of the day in developing countries. Sustainable Computing: Informatics and Systems, 30, 100512. https://doi.org/10.1016/j.suscom.2021.100512

Jägermeyr, J. (2020). Agriculture’s Historic Twin-Challenge Toward Sustainable Water Use and Food Supply for All. Frontiers in Sustainable Food Systems, 4, 35. https://doi.org/10.3389/fsufs.2020.00035

Jellason, N. P., Robinson, E. J. Z., & Ogbaga, C. C. (2021). Agriculture 4.0: Is Sub-Saharan Africa Ready? Applied Sciences, 11(12), 5750. https://doi.org/10.3390/app11125750

Kim, J. H., Jobbágy, E. G., Richter, D. D., Trumbore, S. E., & Jackson, R. B. (2020). Agricultural acceleration of soil carbonate weathering. Global Change Biology, 26(10), 5988–6002. https://doi.org/10.1111/gcb.15207

Kumar, A., Subrahmanyam, G., Mondal, R., Cabral-Pinto, M. M. S., Shabnam, A. A., Jigyasu, D. K., Malyan, S. K., Fagodiya, R. K., Khan, S. A., Kumar, A., & Yu, Z.-G. (2021). Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere, 268, 128855. https://doi.org/10.1016/j.chemosphere.2020.128855

Kuska, M. T., Heim, R. H. J., Geedicke, I., Gold, K. M., Brugger, A., & Paulus, S. (2022). Digital plant pathology: A foundation and guide to modern agriculture. Journal of Plant Diseases and Protection, 129(3), 457–468. https://doi.org/10.1007/s41348-022-00600-z

Lan, Z., Zhang, G., Chen, X., Zhang, Y., Zhang, K. A. I., & Wang, X. (2019). Reducing the Exciton Binding Energy of Donor–Acceptor?Based Conjugated Polymers to Promote Charge?Induced Reactions. Angewandte Chemie International Edition, 58(30), 10236–10240. https://doi.org/10.1002/anie.201904904

Leng, G., & Hall, J. (2019). Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of The Total Environment, 654, 811–821. https://doi.org/10.1016/j.scitotenv.2018.10.434

Popkova, E. G. (2022). Vertical Farms Based on Hydroponics, Deep Learning, and AI as Smart Innovation in Agriculture. Dalam E. G. Popkova & B. S. Sergi (Ed.), Smart Innovation in Agriculture (Vol. 264, hlm. 257–262). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-7633-8_28

Rodrigues, C. G., Garcia, B. F., Verdegem, M., Santos, M. R., Amorim, R. V., & Valenti, W. C. (2019). Integrated culture of Nile tilapia and Amazon river prawn in stagnant ponds, using nutrient-rich water and substrates. Aquaculture, 503, 111–117. https://doi.org/10.1016/j.aquaculture.2018.12.073

Rose, D. C., Wheeler, R., Winter, M., Lobley, M., & Chivers, C.-A. (2021). Agriculture 4.0: Making it work for people, production, and the planet. Land Use Policy, 100, 104933. https://doi.org/10.1016/j.landusepol.2020.104933

Sedeek, K. E. M., Mahas, A., & Mahfouz, M. (2019). Plant Genome Engineering for Targeted Improvement of Crop Traits. Frontiers in Plant Science, 10, 114. https://doi.org/10.3389/fpls.2019.00114

SharathKumar, M., Heuvelink, E., & Marcelis, L. F. M. (2020). Vertical Farming: Moving from Genetic to Environmental Modification. Trends in Plant Science, 25(8), 724–727. https://doi.org/10.1016/j.tplants.2020.05.012

Sharma, P., & Kumar, S. (2021). Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. Bioresource Technology, 339, 125589. https://doi.org/10.1016/j.biortech.2021.125589

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531. https://doi.org/10.1016/j.foodchem.2022.132531

Soni, N. (2020). Artificial Intelligence in Business: From Research and Innovation to Market Deployment. Procedia Computer Science, 167(Query date: 2024-05-23 12:51:03), 2200–2210. https://doi.org/10.1016/j.procs.2020.03.272

Soullier, G., Demont, M., Arouna, A., Lançon, F., & Mendez Del Villar, P. (2020). The state of rice value chain upgrading in West Africa. Global Food Security, 25, 100365. https://doi.org/10.1016/j.gfs.2020.100365

Sun, X., Zhong, T., Zhang, L., Zhang, K., & Wu, W. (2019). Reducing ammonia volatilization from paddy field with rice straw derived biochar. Science of The Total Environment, 660, 512–518. https://doi.org/10.1016/j.scitotenv.2018.12.450

Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Tan, G. S. W., Schmetterer, L., Keane, P. A., & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 167–175. https://doi.org/10.1136/bjophthalmol-2018-313173

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112

Tuomisto, H. L. (2019). Vertical Farming and Cultured Meat: Immature Technologies for Urgent Problems. One Earth, 1(3), 275–277. https://doi.org/10.1016/j.oneear.2019.10.024

Vásquez, Z. S., De Carvalho Neto, D. P., Pereira, G. V. M., Vandenberghe, L. P. S., De Oliveira, P. Z., Tiburcio, P. B., Rogez, H. L. G., Góes Neto, A., & Soccol, C. R. (2019). Biotechnological approaches for cocoa waste management: A review. Waste Management, 90, 72–83. https://doi.org/10.1016/j.wasman.2019.04.030

Wang, X., Shao, S., & Li, L. (2019). Agricultural inputs, urbanization, and urban-rural income disparity: Evidence from China. China Economic Review, 55, 67–84. https://doi.org/10.1016/j.chieco.2019.03.009

Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes, 7(1), 36. https://doi.org/10.3390/pr7010036

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Proceedings of the IEEE, 107(8), 1738–1762. https://doi.org/10.1109/JPROC.2019.2918951

Authors

Gareev Ozal
gareevozel@rgmail.com (Primary Contact)
Chekhonin Ilyasova
Vladimir Ilgiz
Ozal, G., Ilyasova, C., & Ilgiz, V. (2024). Post-Harvest Storage and Processing Technology in Russia: Reducing Yield Loss. Techno Agriculturae Studium of Research, 1(1), 28–40. Retrieved from https://journal.ypidathu.or.id/index.php/agriculturae/article/view/950

Article Details