Applications of Artificial Intelligence in Weather Prediction and Agricultural Risk Management in India

Aldi Bastiatul Fawait (1), Puteri Aprilani (2), Sugiarto Sugiarto (3), Vann Sok (4)
(1) Universitas Widya Gama Mahakam Samarinda, Indonesia,
(2) Universitas Widya Gama Mahakam Samarinda, Indonesia,
(3) Universitas Widya Gama Mahakam Samarinda, Indonesia,
(4) Pannasastra University, Cambodia

Abstract

Agriculture in India is particularly vulnerable to climate change and extreme weather conditions, which can negatively impact productivity and food security. This research was conducted against the background of the importance of developing technology to help farmers in dealing with weather uncertainty and managing agricultural risks. The purpose of this study is to explore the application of artificial intelligence (AI) in accurately predicting weather as well as managing the risks associated with extreme weather in India's agricultural sector. This study uses a descriptive method with a quantitative and qualitative approach, where data is collected through interviews with agricultural experts, analysis of historical weather data, and AI modeling. The results show that the AI application is able to predict weather patterns with an accuracy rate of up to 90%, which helps farmers make more informed decisions regarding planting timing, irrigation, and pesticide use. In addition, AI-based risk management systems allow for early detection of extreme weather, thereby reducing crop losses. The conclusion of the study is that artificial intelligence applications have great potential to improve food security and agricultural productivity in India by helping farmers anticipate weather changes and manage risks more efficiently. However, the adoption of this technology requires adequate training and infrastructure to ensure its optimal use in the field.

Full text article

Generated from XML file

References

Antolini, F., Tate, E., Dalzell, B., Young, N., Johnson, K., & Hawthorne, P. L. (2020). Flood Risk Reduction from Agricultural Best Management Practices. JAWRA Journal of the American Water Resources Association, 56(1), 161–179. https://doi.org/10.1111/1752-1688.12812

Barmuta, K., & Tuguz, N. (2021). Organizational and Managerial Mechanism for Risk Management of Agricultural Enterprises. E3S Web of Conferences, 273, 08005. https://doi.org/10.1051/e3sconf/202127308005

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012

Birthal, P. S., Hazrana, J., & Negi, D. S. (2020). Diversification in Indian agriculture towards high value crops: Multilevel determinants and policy implications. Land Use Policy, 91, 104427. https://doi.org/10.1016/j.landusepol.2019.104427

Bochenek, B., & Ustrnul, Z. (2022). Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere, 13(2), 180. https://doi.org/10.3390/atmos13020180

Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510

Cho, D., Yoo, C., Im, J., & Cha, D. (2020). Comparative Assessment of Various Machine Learning?Based Bias Correction Methods for Numerical Weather Prediction Model Forecasts of Extreme Air Temperatures in Urban Areas. Earth and Space Science, 7(4), e2019EA000740. https://doi.org/10.1029/2019EA000740

Clark, E. M., Merrill, S. C., Trinity, L., Bucini, G., Cheney, N., Langle-Chimal, O., Shrum, T., Koliba, C., Zia, A., & Smith, J. M. (2020). Using experimental gaming simulations to elicit risk mitigation behavioral strategies for agricultural disease management. PLOS ONE, 15(3), e0228983. https://doi.org/10.1371/journal.pone.0228983

Datta, P., Behera, B., & Rahut, D. B. (2022). Climate change and Indian agriculture: A systematic review of farmers’ perception, adaptation, and transformation. Environmental Challenges, 8, 100543. https://doi.org/10.1016/j.envc.2022.100543

Deng, M., Malik, A., Zhang, Q., Sadeghpour, A., Zhu, Y., & Li, Q. (2021). Improving Cd risk managements of rice cropping system by integrating source-soil-rice-human chain for a typical intensive industrial and agricultural region. Journal of Cleaner Production, 313, 127883. https://doi.org/10.1016/j.jclepro.2021.127883

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Furuoka, F., Yaya, O. S., Ling, P. K., Al-Faryan, M. A. S., & Islam, M. N. (2023). Transmission of risks between energy and agricultural commodities: Frequency time-varying VAR, asymmetry and portfolio management. Resources Policy, 81, 103339. https://doi.org/10.1016/j.resourpol.2023.103339

Guntukula, R. (2020). Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. Journal of Public Affairs, 20(1), e2040. https://doi.org/10.1002/pa.2040

Jato-Espino, D., & Mayor-Vitoria, F. (2023). A statistical and machine learning methodology to model rural depopulation risk and explore its attenuation through agricultural land use management. Applied Geography, 152, 102870. https://doi.org/10.1016/j.apgeog.2023.102870

Karevan, Z., & Suykens, J. A. K. (2020). Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks, 125, 1–9. https://doi.org/10.1016/j.neunet.2019.12.030

Kong, R., & Castella, J.-C. (2021). Farmers’ resource endowment and risk management affect agricultural practices and innovation capacity in the Northwestern uplands of Cambodia. Agricultural Systems, 190, 103067. https://doi.org/10.1016/j.agsy.2021.103067

Kumar, Ch. M. S., Singh, S., Gupta, M. K., Nimdeo, Y. M., Raushan, R., Deorankar, A. V., Kumar, T. M. A., Rout, P. K., Chanotiya, C. S., Pakhale, V. D., & Nannaware, A. D. (2023). Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustainable Energy Technologies and Assessments, 55, 102905. https://doi.org/10.1016/j.seta.2022.102905

Kumar, R., Kumar, A., Gupta, M. K., Yadav, J., & Jain, A. (2022). Solar tree-based water pumping for assured irrigation in sustainable Indian agriculture environment. Sustainable Production and Consumption, 33, 15–27. https://doi.org/10.1016/j.spc.2022.06.013

Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905

Loukola-Ruskeeniemi, K., Müller, I., Reichel, S., Jones, C., Battaglia-Brunet, F., Elert, M., Le Guédard, M., Hatakka, T., Hellal, J., Jordan, I., Kaija, J., Keiski, R. L., Pinka, J., Tarvainen, T., Turkki, A., Turpeinen, E., & Valkama, H. (2022). Risk management for arsenic in agricultural soil–water systems: Lessons learned from case studies in Europe. Journal of Hazardous Materials, 424, 127677. https://doi.org/10.1016/j.jhazmat.2021.127677

Mahto, A. K., Alam, M. A., Biswas, R., Ahmed, J., & Alam, S. I. (2021). Short-Term Forecasting of Agriculture Commodities in Context of Indian Market for Sustainable Agriculture by Using the Artificial Neural Network. Journal of Food Quality, 2021, 1–13. https://doi.org/10.1155/2021/9939906

Markovics, D., & Mayer, M. J. (2022). Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renewable and Sustainable Energy Reviews, 161, 112364. https://doi.org/10.1016/j.rser.2022.112364

Meza, I., Eyshi Rezaei, E., Siebert, S., Ghazaryan, G., Nouri, H., Dubovyk, O., Gerdener, H., Herbert, C., Kusche, J., Popat, E., Rhyner, J., Jordaan, A., Walz, Y., & Hagenlocher, M. (2021). Drought risk for agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk management. Science of The Total Environment, 799, 149505. https://doi.org/10.1016/j.scitotenv.2021.149505

Ming, X., Liang, Q., Xia, X., Li, D., & Fowler, H. J. (2020). Real?Time Flood Forecasting Based on a High?Performance 2?D Hydrodynamic Model and Numerical Weather Predictions. Water Resources Research, 56(7), e2019WR025583. https://doi.org/10.1029/2019WR025583

Mor, S., Madan, S., & Prasad, K. D. (2021). Artificial intelligence and carbon footprints: Roadmap for Indian agriculture. Strategic Change, 30(3), 269–280. https://doi.org/10.1002/jsc.2409

Nishant, P. S., Sai Venkat, P., Avinash, B. L., & Jabber, B. (2020). Crop Yield Prediction based on Indian Agriculture using Machine Learning. 2020 International Conference for Emerging Technology (INCET), 1–4. https://doi.org/10.1109/INCET49848.2020.9154036

Plambeck, N. O. (2020). Reassessment of the potential risk of soil erosion by water on agricultural land in Germany: Setting the stage for site-appropriate decision-making in soil and water resources management. Ecological Indicators, 118, 106732. https://doi.org/10.1016/j.ecolind.2020.106732

Praveen, B., & Sharma, P. (2020). Climate Change and its impacts on Indian agriculture: An Econometric analysis. Journal of Public Affairs, 20(1), e1972. https://doi.org/10.1002/pa.1972

Rasp, S., & Thuerey, N. (2021). Data?Driven Medium?Range Weather Prediction With a Resnet Pretrained on Climate Simulations: A New Model for WeatherBench. Journal of Advances in Modeling Earth Systems, 13(2), e2020MS002405. https://doi.org/10.1029/2020MS002405

Ren, X., Li, X., Ren, K., Song, J., Xu, Z., Deng, K., & Wang, X. (2021). Deep Learning-Based Weather Prediction: A Survey. Big Data Research, 23, 100178. https://doi.org/10.1016/j.bdr.2020.100178

Reyes, J., Elias, E., Haacker, E., Kremen, A., Parker, L., & Rottler, C. (2020). Assessing agricultural risk management using historic crop insurance loss data over the ogallala aquifer. Agricultural Water Management, 232, 106000. https://doi.org/10.1016/j.agwat.2020.106000

Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L. H., Mozaffari, A., & Stadtler, S. (2021). Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194), 20200097. https://doi.org/10.1098/rsta.2020.0097

Schwalbert, R. A., Amado, T., Corassa, G., Pott, L. P., Prasad, P. V. V., & Ciampitti, I. A. (2020). Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricultural and Forest Meteorology, 284, 107886. https://doi.org/10.1016/j.agrformet.2019.107886

T, M., Makkithaya, K., & G, N. V. (2022). A Federated Learning-Based Crop Yield Prediction for Agricultural Production Risk Management. 2022 IEEE Delhi Section Conference (DELCON), 1–7. https://doi.org/10.1109/DELCON54057.2022.9752836

T., M., Makkithaya, K., & V.G., N. (2023). A trusted IoT data sharing and secure oracle based access for agricultural production risk management. Computers and Electronics in Agriculture, 204, 107544. https://doi.org/10.1016/j.compag.2022.107544

Tanti, P. C., Jena, P. R., Aryal, J. P., & Rahut, D. B. (2022). Role of institutional factors in climate?smart technology adoption in agriculture: Evidence from an Eastern Indian state. Environmental Challenges, 7, 100498. https://doi.org/10.1016/j.envc.2022.100498

Tripathi, S., Mahra, S., J, V., Tiwari, K., Rana, S., Tripathi, D. K., Sharma, S., & Sahi, S. (2023). Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review. Nanomaterials, 13(10), 1604. https://doi.org/10.3390/nano13101604

Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337–339. https://doi.org/10.1016/j.dsx.2020.04.012

Weyn, J. A., Durran, D. R., & Caruana, R. (2020). Improving Data?Driven Global Weather Prediction Using Deep Convolutional Neural Networks on a Cubed Sphere. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002109. https://doi.org/10.1029/2020MS002109

Zandi, P., Rahmani, M., Khanian, M., & Mosavi, A. (2020). Agricultural Risk Management Using Fuzzy TOPSIS Analytical Hierarchy Process (AHP) and Failure Mode and Effects Analysis (FMEA). Agriculture, 10(11), 504. https://doi.org/10.3390/agriculture10110504

Authors

Aldi Bastiatul Fawait
aldi.bas.fawait@uwgm.ac.id (Primary Contact)
Puteri Aprilani
Sugiarto Sugiarto
Vann Sok
Fawait, A. B., Aprilani, P., Sugiarto, S., & Sok, V. (2024). Applications of Artificial Intelligence in Weather Prediction and Agricultural Risk Management in India. Techno Agriculturae Studium of Research, 1(3), 163–174. https://doi.org/10.70177/agriculturae.v1i3.1591

Article Details