Applications of Artificial Intelligence in Weather Prediction and Agricultural Risk Management in India

Zargari Benjamin (1), Topacio Najmeh (2), Mashhadi Shariati (3)
(1) University of Calcutta, India,
(2) University of Calcutta, India,
(3) University of Calcutta, India

Abstract

Accurate weather prediction and effective agricultural risk management are essential to improve the productivity and sustainability of the farm sector in India. However, extreme climate fluctuations and weather uncertainty pose significant challenges for farmers and policymakers. Artificial Intelligence (AI) offers a potential solution to this problem with its ability to analyze complex data and identify patterns. This study aims to explore the application of Artificial Intelligence in weather prediction and agricultural risk management in India. Specifically, the study seeks to develop AI models that accurately predict weather and recommend appropriate agrarian risk management strategies. In this study, historical weather data, climate data, and agricultural data were collected from various sources. Various AI techniques, such as machine learning, deep learning, and natural language processing, are used to analyze data and develop weather prediction and agricultural risk management models. The model is then validated and optimized using test data. The results showed that the developed AI model can predict the weather more accurately than conventional methods. The model can also provide specific recommendations for agricultural risk management, such as proper crop selection, optimal planting timing, and other risk mitigation strategies. This research shows the vast potential of Artificial Intelligence in improving weather prediction and agricultural risk management in India. By adopting AI technology, farmers and policymakers can make better decisions and improve the productivity and sustainability of the agricultural sector.

Full text article

Generated from XML file

References

Abol-Fotouh, D., Dörling, B., Zapata-Arteaga, O., Rodríguez-Martínez, X., Gómez, A., Reparaz, J. S., Laromaine, A., Roig, A., & Campoy-Quiles, M. (2019). Farming thermoelectric paper. Energy & Environmental Science, 12(2), 716–726. https://doi.org/10.1039/C8EE03112F

Afridi, M. S., Ali, S., Salam, A., César Terra, W., Hafeez, A., Sumaira, Ali, B., S. AlTami, M., Ameen, F., Ercisli, S., Marc, R. A., Medeiros, F. H. V., & Karunakaran, R. (2022). Plant Microbiome Engineering: Hopes or Hypes. Biology, 11(12), 1782. https://doi.org/10.3390/biology11121782

Alavaisha, E., Manzoni, S., & Lindborg, R. (2019). Different agricultural practices affect soil carbon, nitrogen and phosphorous in Kilombero -Tanzania. Journal of Environmental Management, 234, 159–166. https://doi.org/10.1016/j.jenvman.2018.12.039

Attia, Z. I., Noseworthy, P. A., Lopez-Jimenez, F., Asirvatham, S. J., Deshmukh, A. J., Gersh, B. J., Carter, R. E., Yao, X., Rabinstein, A. A., Erickson, B. J., Kapa, S., & Friedman, P. A. (2019). An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. The Lancet, 394(10201), 861–867. https://doi.org/10.1016/S0140-6736(19)31721-0

Avgoustaki, D. D., & Xydis, G. (2020). Plant factories in the water-food-energy Nexus era: A systematic bibliographical review. Food Security, 12(2), 253–268. https://doi.org/10.1007/s12571-019-01003-z

Beacham, A. M., Vickers, L. H., & Monaghan, J. M. (2019). Vertical farming: A summary of approaches to growing skywards. The Journal of Horticultural Science and Biotechnology, 94(3), 277–283. https://doi.org/10.1080/14620316.2019.1574214

Beavers, A. W., Kennedy, A. O., Blake, J. P., & Comstock, S. S. (2024). Development and evaluation of food preservation lessons for gardeners: Application of the DESIGN process. Public Health Nutrition, 27(1), e23. https://doi.org/10.1017/S1368980023002926

Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., & Zomaya, A. Y. (2020). Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence. IEEE Internet of Things Journal, 7(8), 7457–7469. https://doi.org/10.1109/JIOT.2020.2984887

Dwivedi, Y. K. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57(Query date: 2024-05-23 12:51:03). https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Fountas, S., Mylonas, N., Malounas, I., Rodias, E., Hellmann Santos, C., & Pekkeriet, E. (2020). Agricultural Robotics for Field Operations. Sensors, 20(9), 2672. https://doi.org/10.3390/s20092672

Goel, R. K., Yadav, C. S., Vishnoi, S., & Rastogi, R. (2021). Smart agriculture – Urgent need of the day in developing countries. Sustainable Computing: Informatics and Systems, 30, 100512. https://doi.org/10.1016/j.suscom.2021.100512

Jägermeyr, J. (2020). Agriculture’s Historic Twin-Challenge Toward Sustainable Water Use and Food Supply for All. Frontiers in Sustainable Food Systems, 4, 35. https://doi.org/10.3389/fsufs.2020.00035

Jellason, N. P., Robinson, E. J. Z., & Ogbaga, C. C. (2021). Agriculture 4.0: Is Sub-Saharan Africa Ready? Applied Sciences, 11(12), 5750. https://doi.org/10.3390/app11125750

Kim, J. H., Jobbágy, E. G., Richter, D. D., Trumbore, S. E., & Jackson, R. B. (2020). Agricultural acceleration of soil carbonate weathering. Global Change Biology, 26(10), 5988–6002. https://doi.org/10.1111/gcb.15207

Kumar, A., Subrahmanyam, G., Mondal, R., Cabral-Pinto, M. M. S., Shabnam, A. A., Jigyasu, D. K., Malyan, S. K., Fagodiya, R. K., Khan, S. A., Kumar, A., & Yu, Z.-G. (2021). Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere, 268, 128855. https://doi.org/10.1016/j.chemosphere.2020.128855

Kuska, M. T., Heim, R. H. J., Geedicke, I., Gold, K. M., Brugger, A., & Paulus, S. (2022). Digital plant pathology: A foundation and guide to modern agriculture. Journal of Plant Diseases and Protection, 129(3), 457–468. https://doi.org/10.1007/s41348-022-00600-z

Lan, Z., Zhang, G., Chen, X., Zhang, Y., Zhang, K. A. I., & Wang, X. (2019). Reducing the Exciton Binding Energy of Donor–Acceptor?Based Conjugated Polymers to Promote Charge?Induced Reactions. Angewandte Chemie International Edition, 58(30), 10236–10240. https://doi.org/10.1002/anie.201904904

Leng, G., & Hall, J. (2019). Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of The Total Environment, 654, 811–821. https://doi.org/10.1016/j.scitotenv.2018.10.434

Popkova, E. G. (2022). Vertical Farms Based on Hydroponics, Deep Learning, and AI as Smart Innovation in Agriculture. Dalam E. G. Popkova & B. S. Sergi (Ed.), Smart Innovation in Agriculture (Vol. 264, hlm. 257–262). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-7633-8_28

Rodrigues, C. G., Garcia, B. F., Verdegem, M., Santos, M. R., Amorim, R. V., & Valenti, W. C. (2019). Integrated culture of Nile tilapia and Amazon river prawn in stagnant ponds, using nutrient-rich water and substrates. Aquaculture, 503, 111–117. https://doi.org/10.1016/j.aquaculture.2018.12.073

Rose, D. C., Wheeler, R., Winter, M., Lobley, M., & Chivers, C.-A. (2021). Agriculture 4.0: Making it work for people, production, and the planet. Land Use Policy, 100, 104933. https://doi.org/10.1016/j.landusepol.2020.104933

Sedeek, K. E. M., Mahas, A., & Mahfouz, M. (2019). Plant Genome Engineering for Targeted Improvement of Crop Traits. Frontiers in Plant Science, 10, 114. https://doi.org/10.3389/fpls.2019.00114

SharathKumar, M., Heuvelink, E., & Marcelis, L. F. M. (2020). Vertical Farming: Moving from Genetic to Environmental Modification. Trends in Plant Science, 25(8), 724–727. https://doi.org/10.1016/j.tplants.2020.05.012

Sharma, P., & Kumar, S. (2021). Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. Bioresource Technology, 339, 125589. https://doi.org/10.1016/j.biortech.2021.125589

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531. https://doi.org/10.1016/j.foodchem.2022.132531

Soni, N. (2020). Artificial Intelligence in Business: From Research and Innovation to Market Deployment. Procedia Computer Science, 167(Query date: 2024-05-23 12:51:03), 2200–2210. https://doi.org/10.1016/j.procs.2020.03.272

Soullier, G., Demont, M., Arouna, A., Lançon, F., & Mendez Del Villar, P. (2020). The state of rice value chain upgrading in West Africa. Global Food Security, 25, 100365. https://doi.org/10.1016/j.gfs.2020.100365

Sun, X., Zhong, T., Zhang, L., Zhang, K., & Wu, W. (2019). Reducing ammonia volatilization from paddy field with rice straw derived biochar. Science of The Total Environment, 660, 512–518. https://doi.org/10.1016/j.scitotenv.2018.12.450

Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Tan, G. S. W., Schmetterer, L., Keane, P. A., & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 167–175. https://doi.org/10.1136/bjophthalmol-2018-313173

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112

Tuomisto, H. L. (2019). Vertical Farming and Cultured Meat: Immature Technologies for Urgent Problems. One Earth, 1(3), 275–277. https://doi.org/10.1016/j.oneear.2019.10.024

Vásquez, Z. S., De Carvalho Neto, D. P., Pereira, G. V. M., Vandenberghe, L. P. S., De Oliveira, P. Z., Tiburcio, P. B., Rogez, H. L. G., Góes Neto, A., & Soccol, C. R. (2019). Biotechnological approaches for cocoa waste management: A review. Waste Management, 90, 72–83. https://doi.org/10.1016/j.wasman.2019.04.030

Wang, X., Shao, S., & Li, L. (2019). Agricultural inputs, urbanization, and urban-rural income disparity: Evidence from China. China Economic Review, 55, 67–84. https://doi.org/10.1016/j.chieco.2019.03.009

Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes, 7(1), 36. https://doi.org/10.3390/pr7010036

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Proceedings of the IEEE, 107(8), 1738–1762. https://doi.org/10.1109/JPROC.2019.2918951

Authors

Zargari Benjamin
zargaribenjamin@gmail.com (Primary Contact)
Topacio Najmeh
Mashhadi Shariati
Benjamin, Z., Najmeh, T., & Shariati, M. (2024). Applications of Artificial Intelligence in Weather Prediction and Agricultural Risk Management in India. Techno Agriculturae Studium of Research, 1(1), 15–27. Retrieved from https://journal.ypidathu.or.id/index.php/agriculturae/article/view/949

Article Details