AI-Driven Predictive Maintenance for Smart Manufacturing Systems: A Case Study Using Deep Learning on Sensor Data
Abstract
The rapid advancement of Industry 4.0 has catalyzed the integration of artificial intelligence (AI) into smart manufacturing, with predictive maintenance emerging as a crucial application to reduce downtime and optimize operational efficiency. This study aims to develop and evaluate a deep learning-based predictive maintenance model by leveraging real-time sensor data from a smart factory environment. A convolutional neural network (CNN) architecture was implemented to detect anomalies and predict machinery failures in advance. The dataset, consisting of multivariate time-series signals from industrial sensors, was preprocessed and used to train, validate, and test the model’s predictive performance. Results indicate that the proposed deep learning model achieved a prediction accuracy of 94.6%, outperforming traditional statistical and machine learning methods in both precision and recall. The implementation of this AI-driven system enables proactive maintenance strategies, minimizing production losses and extending equipment lifespan. In conclusion, the research demonstrates the feasibility and effectiveness of deep learning in predictive maintenance applications for smart manufacturing systems and offers a scalable solution adaptable to diverse industrial settings.
Full text article
References
Almomani, M. M., Mayyas, Y. O., Alomari, O. H., Tashtoush, G. M., Cherdkeattikul, S., & Akafuah, N. K. (2025). Augmenting energy efficiency in automotive paint ovens: A review of future prospects and potential for lean, six sigma, AI, and IoT integration. Management of Environmental Quality. Scopus. https://doi.org/10.1108/MEQ-03-2025-0164
Arabelli, R., Chotaliya, D. K., Gadhave, R. T., Haritha, B., Kasireddy, L. C., & Soni, M. (2025). Artificial Intelligence in Next Generation IoT Infrastructure: Challenges and Opportunities. Int. Conf. Adv. Comput. Sci., Electr., Electron., Commun. Technol., CE2CT, 1436–1440. Scopus. https://doi.org/10.1109/CE2CT64011.2025.10939142
Bakirci, M., & Bayraktar, I. (2025). AI-Driven Micro Defect Detection for Aerospace-Grade Metal Surface Quality Control in Smart Manufacturing. Proc. - Int. Russian Smart Ind. Conf., SmartIndustryCon, 115–120. Scopus. https://doi.org/10.1109/SmartIndustryCon65166.2025.10986084
Bataineh, A., Alqudah, H., Abdoh, H. B., & Fataftah, F. (2025). Big Data-Enabled Federated Learning for Secure and Collaborative Industrial IoT in Industry 4.0. Int. Conf. Comput. Intell. Approaches Appl., ICCIAA - Proc. 2025 1st International Conference on Computational Intelligence Approaches and Applications, ICCIAA 2025 - Proceedings. Scopus. https://doi.org/10.1109/ICCIAA65327.2025.11013637
Boareto, P. A., Szejka, A. L., Loures, E. F. R., Deschamps, F., & Santos, E. A. P. (2025). Accelerating Industry 4.0 and 5.0: The Potential of Generative Artificial Intelligence. Dalam Dassisti M., Madani K., & Panetto H. (Ed.), Commun. Comput. Info. Sci.: Vol. 2372 CCIS (hlm. 456–472). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-80760-2_29
Can?, P., Ripeanu, R. G., Dini??, A., T?nase, M., Portoac?, A. I., & P?tîrnac, I. (2025). A Review of Safety Valves: Standards, Design, and Technological Advances in Industry. Processes, 13(1). Scopus. https://doi.org/10.3390/pr13010105
Chang, C.-H., Chiao, H.-T., Chang, H.-C., Kristiani, E., & Yang, C.-T. (2025). A predictive maintenance architecture for TFT-LCD manufacturing using machine learning on the cloud service. Internet of Things (The Netherlands), 31. Scopus. https://doi.org/10.1016/j.iot.2025.101541
Chen, N. (2025). An Edge AI Course Template. Dalam Arabnia H.R., Deligiannidis L., Amirian S., Ghareh Mohammadi F., & Shenavarmasouleh F. (Ed.), Commun. Comput. Info. Sci.: Vol. 2261 CCIS (hlm. 344–352). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-85930-4_31
Guidotti, D., Pandolfo, L., & Pulina, L. (2025). A Systematic Literature Review of Supervised Machine Learning Techniques for Predictive Maintenance in Industry 4.0. IEEE Access, 13, 102479–102504. Scopus. https://doi.org/10.1109/ACCESS.2025.3578686
Hossain, M. N., Rahim, M. A., Rahman, M. M., & Ramasamy, D. (2025). Artificial Intelligence Revolutionising the Automotive Sector: A Comprehensive Review of Current Insights, Challenges, and Future Scope. Computers, Materials and Continua, 82(3), 3643–3692. Scopus. https://doi.org/10.32604/cmc.2025.061749
Islam, M. M. M., Emon, J. I., Ng, K. Y., Asadpour, A., Aziz, M. M. R. A., Baptista, M. L., & Kim, J.-M. (2025). Artificial Intelligence in Smart Manufacturing: Emerging Opportunities and Prospects. Dalam Springer Ser. Adv. Manuf.: Vol. Part F138 (hlm. 9–36). Springer Nature; Scopus. https://doi.org/10.1007/978-3-031-80154-9_2
Kiangala, K. S., & Wang, Z. (2025). A Predictive Maintenance Platform for a Conveyor Motor Sensor System Using Recurrent Neural Networks. Dalam Zhang H., Li X., Hao T., Meng W., Wu Z., & He Q. (Ed.), Commun. Comput. Info. Sci.: Vol. 2181 CCIS (hlm. 158–170). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-97-7001-4_12
Kodumuru, R., Sarkar, S., Parepally, V., & Chandarana, J. (2025). Artificial Intelligence and Internet of Things Integration in Pharmaceutical Manufacturing: A Smart Synergy. Pharmaceutics, 17(3). Scopus. https://doi.org/10.3390/pharmaceutics17030290
Kogel-Hollacher, M., Nicolay, T., Reiser, J., Boley, S., Schwarz, J., & Pallier, G. (2025). Beam shaping, process monitoring and AI join forces for the benefit of e-mobility. Dalam Kaierle S. & Kleine K.R. (Ed.), Proc SPIE Int Soc Opt Eng (Vol. 13356). SPIE; Scopus. https://doi.org/10.1117/12.3044297
Martínez-Mireles, J. R., Rodríguez-Flores, J., García-Márquez, M. A., Austria-Cornejo, A., & Figueroa-Diaz, R. A. (2025). AI in smart manufacturing. Dalam Mach. And Deep Learn. Solut. For Achiev. The Sustain. Dev. Goals (hlm. 463–494). IGI Global; Scopus. https://doi.org/10.4018/979-8-3693-8161-8.ch023
Massaro, A., Santarsiero, F., & Schiuma, G. (2025). Advanced Electronic Controller Circuits Enabling Production Processes and AI-driven KM in Industry 5.0. Journal of Industrial Information Integration, 45. Scopus. https://doi.org/10.1016/j.jii.2025.100841
Meena, R., Sahoo, S., Malik, A., Kumar, S., & Nguyen, M. (2025). Artificial intelligence and circular supply chains: Framework for applications and deployment from the triple bottom line model perspective. Annals of Operations Research. Scopus. https://doi.org/10.1007/s10479-025-06510-1
Namboodri, T., & Felh?, C. (2025). AI FOR QUALITY OPTIMIZATION IN TURNING: A SHORT REVIEW. MM Science Journal, 2025, 8338–8352. Scopus. https://doi.org/10.17973/MMSJ.2025_06_2025033
Negru, N., Radu, S. M., Rus, C., Risteiu, M., & Egri, A. (2025). AI-Powered Recycling and Flexible EV Manufacturing: A Conceptual Model for Jiu Valley—Romania. Dalam Kacur J., Skovranek T., Laciak M., & Mojzisova A. (Ed.), Proc. Int. Carpathian Control Conf., ICCC. Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ICCC65605.2025.11022796
Park, J., Yoo, B., Yi Baek, S., Youn, C., Kim, S., Kim, D., Roh, S., Jun Park, S., Kim, J., Lee, C., & Choi, C. (2025). Advancing Condition-Based Maintenance in the Semiconductor Industry: Innovations, Challenges and Future Directions for Predictive Maintenance. IEEE Transactions on Semiconductor Manufacturing, 38(1), 96–105. Scopus. https://doi.org/10.1109/TSM.2025.3530964
Prabu, S., Senthilraja, R., Ali, A. M., Jayapoorani, S., & Arun, M. (2025). AI-Driven Predictive Maintenance for Smart Manufacturing Systems Using Digital Twin Technology. International Journal of Computational and Experimental Science and Engineering, 11(1), 1350–1355. Scopus. https://doi.org/10.22399/ijcesen.1099
Pydikalva, P., Thrimurthulu, V., Bharani, J. S. S. L., Sailaja, V., Nellore, M. K., & Boopathi, S. (2025). A Study on Integration of Deep Learning With IoT for Smart Engineering Solutions. Dalam Navigating Challenges of Object Detection through Cognitive Computing (hlm. 125–158). IGI Global; Scopus. https://doi.org/10.4018/979-8-3693-9057-3.ch005
Raval, J., Dheeraj, R., Markande, A., Anand, V., & Jha, S. (2025). Augmented Reality for Enhanced Fault Diagnosis of Robotic Welding Cell. Dalam Chakrabarti A., Suwas S., & Arora M. (Ed.), Lect. Notes Mech. Eng. (Vol. 5, hlm. 35–45). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-97-6176-0_4
Renukhadevi, M., Patil, R., Sarode, D. G., & Sakharwade, S. A. (2025). AI-based Smart Control Systems for Induction Brazing in Industrial Applications. Proc. Int. Conf. Trends Mater. Sci. Inventive Mater., ICTMIM, 1530–1537. Scopus. https://doi.org/10.1109/ICTMIM65579.2025.10988032
Saveetha, D., Ponnusamy, V., Zdravkovi?, N., & Nandini, S. M. (2025). Blockchain Application in Industry 5.0. Dalam Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing (hlm. 421–442). wiley; Scopus. https://doi.org/10.1002/9781394303601.ch19
Shadravan, A., & Parsaei, H. R. (2025). Applications of Enabling Technologies for Industry 4.0 and Industry 5.0 in Manufacturing Sectors: A Review. Dalam Lect. Notes Prod. Eng.: Vol. Part F566 (hlm. 157–165). Springer Nature; Scopus. https://doi.org/10.1007/978-3-031-77723-3_15
Singh, D., & Singh, T. (2025). Advanced maintenance techniques. Dalam Cond.-Based Maint. And Residual Life Predict. (hlm. 65–86). wiley; Scopus. https://doi.org/10.1002/9781119933175.ch4
Singh, S., Sethi, S., Sharma, R., Vaibhavi, D., & Tiwari, A. (2025). AI-Powered CNC Digital Twin for Predictive Maintenance. Int. Conf. Power, Control Comput. Technol., ICPC2T, 892–897. Scopus. https://doi.org/10.1109/ICPC2T63847.2025.10958573
Tyagi, A. K., Kumari, S., & Kumar, U. (2025). Blockchain Based Digital Twin for Smart Manufacturing. Dalam Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing (hlm. 143–178). wiley; Scopus. https://doi.org/10.1002/9781394303601.ch8
Tyagi, A. K., Tiwari, S., Arumugam, S. K., & Sharma, A. K. (2025). Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing. Dalam Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing (hlm. 585). wiley; Scopus. https://doi.org/10.1002/9781394303601
Vijayachitra, S., Prabhu, K., Agilan, S., Salih, M. A., & Madhumitha, S. (2025). Advanced PLC-based Automation for Converging System and Warehousing. Proc. Int. Conf. Trends Mater. Sci. Inventive Mater., ICTMIM, 386–395. Scopus. https://doi.org/10.1109/ICTMIM65579.2025.10988042
Voshart, A. (2025). AI ON THE EDGE. Design Engineering (Canada), January, 20–21. Scopus.
Yorston, C., Chen, C., & Camelio, J. (2025). Advancing architectural frameworks for vibration signature classification in rotating machinery. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 239(5), 711–725. Scopus. https://doi.org/10.1177/09544054241260928