The Role of Mycorrhizal Fungi in Forest Ecosystem Health

Maha Al-Nasser (1), Youssef Al-Mansour (2), Nisreen Al-Sayid (3)
(1) Damascus University of Fine Arts, Syrian Arab Republic,
(2) Syrian Virtual University, Syrian Arab Republic,
(3) Al-Furat University, Syrian Arab Republic

Abstract

Mycorrhizal fungi play a crucial role in forest ecosystems, facilitating nutrient uptake and enhancing plant health. These symbiotic relationships are vital for the resilience and productivity of forests, yet their contributions to ecosystem health remain underexplored. This study aims to investigate the specific roles of mycorrhizal fungi in promoting forest ecosystem health by assessing their impact on nutrient cycling, soil structure, and plant diversity. A combination of field surveys and laboratory analyses was employed, focusing on various forest types with differing mycorrhizal associations. Data were collected on soil properties, fungal biodiversity, and plant growth metrics. The results indicate that forests with diverse mycorrhizal communities exhibit improved soil health, characterized by higher nutrient levels and better moisture retention. Additionally, these forests support greater plant diversity and demonstrate enhanced resilience to environmental stressors. The findings underscore the importance of mycorrhizal fungi in maintaining forest ecosystem health and highlight the need for conservation strategies that protect these critical organisms. In conclusion, mycorrhizal fungi are essential for nutrient cycling and overall forest vitality, suggesting that their preservation should be a key component of forest management practices.

Full text article

Generated from XML file

References

A. Odilov, B., Madraimov, A., Y. Yusupov, O., R. Karimov, N., Alimova, R., Z. Yakhshieva, Z., & A Akhunov, S. (2024). Utilizing Deep Learning and the Internet of Things to Monitor the Health of Aquatic Ecosystems to Conserve Biodiversity. Natural and Engineering Sciences, 9(1), 72–83. https://doi.org/10.28978/nesciences.1491795

Alcocer, I., Lima, H., Sugai, L. S. M., & Llusia, D. (2022). Acoustic indices as proxies for biodiversity: A meta?analysis. Biological Reviews, 97(6), 2209–2236. https://doi.org/10.1111/brv.12890

Atwoli, L., Baqui, A. H., Benfield, T., Bosurgi, R., Godlee, F., Hancocks, S., Horton, R., Laybourn-Langton, L., Monteiro, C. A., Norman, I., Patrick, K., Praities, N., Olde Rikkert, M. G. M., Rubin, E. J., Sahni, P., Smith, R., Talley, N. J., Turale, S., & Vázquez, D. (2021). Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. BMJ, n1734. https://doi.org/10.1136/bmj.n1734

Buotte, P. C., Law, B. E., Ripple, W. J., & Berner, L. T. (2020). Carbon sequestration and biodiversity co?benefits of preserving forests in the western UNITED STATES. Ecological Applications, 30(2), e02039. https://doi.org/10.1002/eap.2039

Burns, F., Eaton, M. A., Burfield, I. J., Klva?ová, A., Šilarová, E., Staneva, A., & Gregory, R. D. (2021). Abundance decline in the avifauna of the European Union reveals cross?continental similarities in biodiversity change. Ecology and Evolution, 11(23), 16647–16660. https://doi.org/10.1002/ece3.8282

Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., ?tvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. D., Fiasca, B., … Znachor, P. (2020). Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water, 12(1), 260. https://doi.org/10.3390/w12010260

Caro, T., Rowe, Z., Berger, J., Wholey, P., & Dobson, A. (2022). An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conservation Letters, 15(3), e12868. https://doi.org/10.1111/conl.12868

Chase, J. M., Jeliazkov, A., Ladouceur, E., & Viana, D. S. (2020). Biodiversity conservation through the lens of metacommunity ecology. Annals of the New York Academy of Sciences, 1469(1), 86–104. https://doi.org/10.1111/nyas.14378

Dinerstein, E., Joshi, A. R., Vynne, C., Lee, A. T. L., Pharand-Deschênes, F., França, M., Fernando, S., Birch, T., Burkart, K., Asner, G. P., & Olson, D. (2020). A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Science Advances, 6(36), eabb2824. https://doi.org/10.1126/sciadv.abb2824

Estrada-Carmona, N., Sánchez, A. C., Remans, R., & Jones, S. K. (2022). Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proceedings of the National Academy of Sciences, 119(38), e2203385119. https://doi.org/10.1073/pnas.2203385119

Fan, J., Shen, S., Erwin, D. H., Sadler, P. M., MacLeod, N., Cheng, Q., Hou, X., Yang, J., Wang, X., Wang, Y., Zhang, H., Chen, X., Li, G., Zhang, Y., Shi, Y., Yuan, D., Chen, Q., Zhang, L., Li, C., & Zhao, Y. (2020). A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475), 272–277. https://doi.org/10.1126/science.aax4953

Halliday, F. W., Rohr, J. R., & Laine, A. (2020). Biodiversity loss underlies the dilution effect of biodiversity. Ecology Letters, 23(11), 1611–1622. https://doi.org/10.1111/ele.13590

Heinrich, M., Mah, J., & Amirkia, V. (2021). Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look. Molecules, 26(7), 1836. https://doi.org/10.3390/molecules26071836

Hochkirch, A., Samways, M. J., Gerlach, J., Böhm, M., Williams, P., Cardoso, P., Cumberlidge, N., Stephenson, P. J., Seddon, M. B., Clausnitzer, V., Borges, P. A. V., Mueller, G. M., Pearce?Kelly, P., Raimondo, D. C., Danielczak, A., & Dijkstra, K. B. (2021). A strategy for the next decade to address data deficiency in neglected biodiversity. Conservation Biology, 35(2), 502–509. https://doi.org/10.1111/cobi.13589

Hong, P., Schmid, B., De Laender, F., Eisenhauer, N., Zhang, X., Chen, H., Craven, D., De Boeck, H. J., Hautier, Y., Petchey, O. L., Reich, P. B., Steudel, B., Striebel, M., Thakur, M. P., & Wang, S. (2022). Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 25(2), 555–569. https://doi.org/10.1111/ele.13936

Jung, M., Arnell, A., De Lamo, X., García-Rangelm, S., Lewis, M., Mark, J., Merow, C., Miles, L., Ondo, I., Pironon, S., Ravilious, C., Rivers, M., Schepashenko, D., Tallowin, O., van Soesbergen, A., Govaerts, R., Boyle, B. L., Enquist, B. J., Feng, X., … Visconti, P. (2021). Areas of global importance for conserving terrestrial biodiversity, carbon, and water (Version 1.0) [Dataset]. Zenodo. https://doi.org/10.5281/ZENODO.5006332

Kour, D., Rana, K. L., Kaur, T., Yadav, N., Yadav, A. N., Kumar, M., Kumar, V., Dhaliwal, H. S., & Saxena, A. K. (2021). Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere, 31(1), 43–75. https://doi.org/10.1016/S1002-0160(20)60057-1

Kumar, M., Yadav, A. N., Saxena, R., Paul, D., & Tomar, R. S. (2021). Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatalysis and Agricultural Biotechnology, 31, 101883. https://doi.org/10.1016/j.bcab.2020.101883

Librán-Embid, F., Klaus, F., Tscharntke, T., & Grass, I. (2020). Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes—A systematic review. Science of The Total Environment, 732, 139204. https://doi.org/10.1016/j.scitotenv.2020.139204

Loreau, M., Barbier, M., Filotas, E., Gravel, D., Isbell, F., Miller, S. J., Montoya, J. M., Wang, S., Aussenac, R., Germain, R., Thompson, P. L., Gonzalez, A., & Dee, L. E. (2021). Biodiversity as insurance: From concept to measurement and application. Biological Reviews, 96(5), 2333–2354. https://doi.org/10.1111/brv.12756

Maasri, A., Jähnig, S. C., Adamescu, M. C., Adrian, R., Baigun, C., Baird, D. J., Batista?Morales, A., Bonada, N., Brown, L. E., Cai, Q., Campos?Silva, J. V., Clausnitzer, V., Contreras?MacBeath, T., Cooke, S. J., Datry, T., Delacámara, G., De Meester, L., Dijkstra, K. B., Do, V. T., … Worischka, S. (2022). A global agenda for advancing freshwater biodiversity research. Ecology Letters, 25(2), 255–263. https://doi.org/10.1111/ele.13931

Madzak, C. (2021). Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. Journal of Fungi, 7(7), 548. https://doi.org/10.3390/jof7070548

Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M., Ackerly, D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher, B. H., Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I., Quiñones, R. M., Stralberg, D., & Thorne, J. H. (2020). Climate?change refugia: Biodiversity in the slow lane. Frontiers in Ecology and the Environment, 18(5), 228–234. https://doi.org/10.1002/fee.2189

Otero, I., Farrell, K. N., Pueyo, S., Kallis, G., Kehoe, L., Haberl, H., Plutzar, C., Hobson, P., García?Márquez, J., Rodríguez?Labajos, B., Martin, J., Erb, K., Schindler, S., Nielsen, J., Skorin, T., Settele, J., Essl, F., Gómez?Baggethun, E., Brotons, L., … Pe’er, G. (2020). Biodiversity policy beyond economic growth. Conservation Letters, 13(4), e12713. https://doi.org/10.1111/conl.12713

Pavoine, S. (2020). adiv: An R package to analyse biodiversity in ecology. Methods in Ecology and Evolution, 11(9), 1106–1112. https://doi.org/10.1111/2041-210X.13430

Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M., & Sardans, J. (2020). Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Global Change Biology, 26(4), 1962–1985. https://doi.org/10.1111/gcb.14981

Perrigo, A., Hoorn, C., & Antonelli, A. (2020). Why mountains matter for biodiversity. Journal of Biogeography, 47(2), 315–325. https://doi.org/10.1111/jbi.13731

Raven, P. H., & Wagner, D. L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118(2), e2002548117. https://doi.org/10.1073/pnas.2002548117

Simkin, R. D., Seto, K. C., McDonald, R. I., & Jetz, W. (2022). Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proceedings of the National Academy of Sciences, 119(12), e2117297119. https://doi.org/10.1073/pnas.2117297119

Spicer, R. A., Farnsworth, A., & Su, T. (2020). Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story. Plant Diversity, 42(4), 229–254. https://doi.org/10.1016/j.pld.2020.06.011

Tickner, D., Opperman, J. J., Abell, R., Acreman, M., Arthington, A. H., Bunn, S. E., Cooke, S. J., Dalton, J., Darwall, W., Edwards, G., Harrison, I., Hughes, K., Jones, T., Leclère, D., Lynch, A. J., Leonard, P., McClain, M. E., Muruven, D., Olden, J. D., … Young, L. (2020). Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience, 70(4), 330–342. https://doi.org/10.1093/biosci/biaa002

Trew, B. T., & Maclean, I. M. D. (2021). Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography, 30(4), 768–783. https://doi.org/10.1111/geb.13272

Wagner, D. L., Fox, R., Salcido, D. M., & Dyer, L. A. (2021). A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proceedings of the National Academy of Sciences, 118(2), e2002549117. https://doi.org/10.1073/pnas.2002549117

Wang, B., Kong, Q., Li, X., Zhao, J., Zhang, H., Chen, W., & Wang, G. (2020). A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients, 12(10), 3197. https://doi.org/10.3390/nu12103197

Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of The Total Environment, 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782

Yuan, Z., Ali, A., Ruiz?Benito, P., Jucker, T., Mori, A. S., Wang, S., Zhang, X., Li, H., Hao, Z., Wang, X., & Loreau, M. (2020a). Above? and below?ground biodiversity jointly regulate temperate forest multifunctionality along a local?scale environmental gradient. Journal of Ecology, 108(5), 2012–2024. https://doi.org/10.1111/1365-2745.13378

Yuan, Z., Ali, A., Ruiz?Benito, P., Jucker, T., Mori, A. S., Wang, S., Zhang, X., Li, H., Hao, Z., Wang, X., & Loreau, M. (2020b). Above? and below?ground biodiversity jointly regulate temperat

Authors

Maha Al-Nasser
mahaalnaser@gmail.com (Primary Contact)
Youssef Al-Mansour
Nisreen Al-Sayid
Al-Nasser, M., Al-Mansour, Y., & Al-Sayid, N. (2024). The Role of Mycorrhizal Fungi in Forest Ecosystem Health. Journal of Selvicoltura Asean, 1(6), 271–281. https://doi.org/10.70177/jsa.v1i6.1673

Article Details

Similar Articles

You may also start an advanced similarity search for this article.