Abstract
Agroforestry has emerged as a vital strategy for promoting sustainable land use, integrating agricultural practices with tree cultivation. This approach addresses critical issues such as land degradation, biodiversity loss, and climate change, making it essential for enhancing ecosystem services and food security. The primary objective of this research is to evaluate the role of agroforestry in sustainable land use practices. This study aims to identify the benefits of agroforestry systems and their potential to enhance environmental, economic, and social outcomes in various contexts. A systematic literature review was conducted, analyzing peer-reviewed articles, reports, and case studies related to agroforestry practices worldwide. Key themes, including ecological benefits, economic viability, and social implications, were identified and synthesized to provide a comprehensive understanding of agroforestry's contributions to sustainable land use. The findings indicate that agroforestry systems significantly improve soil health, enhance biodiversity, and increase carbon sequestration. Economic assessments reveal that agroforestry can provide stable incomes for farmers while promoting food security. Additionally, community engagement in agroforestry practices has been shown to strengthen social resilience and empower local populations. This research concludes that agroforestry plays a critical role in promoting sustainable land use by enhancing ecological health and supporting local economies. To maximize its benefits, policies should encourage the adoption of agroforestry practices and support research on innovative approaches that integrate trees into farming systems effectively.
Full text article
References
Akter, R., Hasan, M. K., Kabir, K. H., Darr, D., & Roshni, N. A. (2022). Agroforestry systems and their impact on livelihood improvement of tribal farmers in a tropical moist deciduous forest in Bangladesh. Trees, Forests and People, 9, 100315. https://doi.org/10.1016/j.tfp.2022.100315
Amadu, F. O., Miller, D. C., & McNamara, P. E. (2020). Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecological Economics, 167, 106443. https://doi.org/10.1016/j.ecolecon.2019.106443
Beule, L., & Karlovsky, P. (2021). Tree rows in temperate agroforestry croplands alter the composition of soil bacterial communities. PLOS ONE, 16(2), e0246919. https://doi.org/10.1371/journal.pone.0246919
Cahyono, E. D., Fairuzzana, S., Willianto, D., Pradesti, E., McNamara, N. P., Rowe, R. L., & Noordwijk, M. V. (2020). Agroforestry Innovation through Planned Farmer Behavior: Trimming in Pine–Coffee Systems. Land, 9(10), 363. https://doi.org/10.3390/land9100363
Durand-Bessart, C., Tixier, P., Quinteros, A., Andreotti, F., Rapidel, B., Tauvel, C., & Allinne, C. (2020). Analysis of interactions amongst shade trees, coffee foliar diseases and coffee yield in multistrata agroforestry systems. Crop Protection, 133, 105137. https://doi.org/10.1016/j.cropro.2020.105137
Gomes, L. C., Bianchi, F. J. J. A., Cardoso, I. M., Fernandes, R. B. A., Filho, E. I. F., & Schulte, R. P. O. (2020). Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil. Agriculture, Ecosystems & Environment, 294, 106858. https://doi.org/10.1016/j.agee.2020.106858
González, N. C., & Kröger, M. (2020). The potential of Amazon indigenous agroforestry practices and ontologies for rethinking global forest governance. Forest Policy and Economics, 118, 102257. https://doi.org/10.1016/j.forpol.2020.102257
Hairiah, K., Widianto, W., Suprayogo, D., & Van Noordwijk, M. (2020). Tree Roots Anchoring and Binding Soil: Reducing Landslide Risk in Indonesian Agroforestry. Land, 9(8), 256. https://doi.org/10.3390/land9080256
He, G., Wang, K., Zhong, Q., Zhang, G., Van Den Bosch, C. K., & Wang, J. (2021). Agroforestry reclamations decreased the CO2 budget of a coastal wetland in the Yangtze estuary. Agricultural and Forest Meteorology, 296, 108212. https://doi.org/10.1016/j.agrformet.2020.108212
Hughes, K., Morgan, S., Baylis, K., Oduol, J., Smith-Dumont, E., Vågen, T.-G., & Kegode, H. (2020). Assessing the downstream socioeconomic impacts of agroforestry in Kenya. World Development, 128, 104835. https://doi.org/10.1016/j.worlddev.2019.104835
Jahan, H., Rahman, Md. W., Islam, Md. S., Rezwan-Al-Ramim, A., Tuhin, Md. M.-U.-J., & Hossain, Md. E. (2022). Adoption of agroforestry practices in Bangladesh as a climate change mitigation option: Investment, drivers, and SWOT analysis perspectives. Environmental Challenges, 7, 100509. https://doi.org/10.1016/j.envc.2022.100509
Jarrett, C., Smith, T. B., Claire, T. T. R., Ferreira, D. F., Tchoumbou, M., Elikwo, M. N. F., Wolfe, J., Brzeski, K., Welch, A. J., Hanna, R., & Powell, L. L. (2021). Bird communities in African cocoa agroforestry are diverse but lack specialized insectivores. Journal of Applied Ecology, 58(6), 1237–1247. https://doi.org/10.1111/1365-2664.13864
Kaba, J. S., Otu-Nyanteh, A., & Abunyewa, A. A. (2020). The role of shade trees in influencing farmers’ adoption of cocoa agroforestry systems: Insight from semi-deciduous rain forest agroecological zone of Ghana. NJAS: Wageningen Journal of Life Sciences, 92(1), 1–7. https://doi.org/10.1016/j.njas.2020.100332
Karlson, M., Ostwald, M., Bayala, J., Bazié, H. R., Ouedraogo, A. S., Soro, B., Sanou, J., & Reese, H. (2020). The Potential of Sentinel-2 for Crop Production Estimation in a Smallholder Agroforestry Landscape, Burkina Faso. Frontiers in Environmental Science, 8, 85. https://doi.org/10.3389/fenvs.2020.00085
Khadka, D., Aryal, A., Bhatta, K. P., Dhakal, B. P., & Baral, H. (2021). Agroforestry Systems and Their Contribution to Supplying Forest Products to Communities in the Chure Range, Central Nepal. Forests, 12(3), 358. https://doi.org/10.3390/f12030358
La Picirelli De Souza, L., Rajabi Hamedani, S., Silva Lora, E. E., Escobar Palacio, J. C., Comodi, G., Villarini, M., & Colantoni, A. (2021). Theoretical and technical assessment of agroforestry residue potential for electricity generation in Brazil towards 2050. Energy Reports, 7, 2574–2587. https://doi.org/10.1016/j.egyr.2021.04.026
Li, M., Li, H., Fu, Q., Liu, D., Yu, L., & Li, T. (2021). Approach for optimizing the water-land-food-energy nexus in agroforestry systems under climate change. Agricultural Systems, 192, 103201. https://doi.org/10.1016/j.agsy.2021.103201
Liu, Z., Jia, G., & Yu, X. (2020). Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain. Agriculture, Ecosystems & Environment, 287, 106697. https://doi.org/10.1016/j.agee.2019.106697
Lizaga, I., Gaspar, L., Latorre, B., & Navas, A. (2020). Variations in transport of suspended sediment and associated elements induced by rainfall and agricultural cycle in a Mediterranean agroforestry catchment. Journal of Environmental Management, 272, 111020. https://doi.org/10.1016/j.jenvman.2020.111020
Miller, D. C., Ordoñez, P. J., Brown, S. E., Forrest, S., Nava, N. J., Hughes, K., & Baylis, K. (2020). The impacts of agroforestry on agricultural productivity, ecosystem services, and human well?being in low?and middle?income countries: An evidence and gap map. Campbell Systematic Reviews, 16(1), e1066. https://doi.org/10.1002/cl2.1066
Mukhlis, I., Rizaludin, M. S., & Hidayah, I. (2022). Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. Forests, 13(4), 556. https://doi.org/10.3390/f13040556
Nath, A. J., Kumar, R., Devi, N. B., Rocky, P., Giri, K., Sahoo, U. K., Bajpai, R. K., Sahu, N., & Pandey, R. (2021). Agroforestry land suitability analysis in the Eastern Indian Himalayan region. Environmental Challenges, 4, 100199. https://doi.org/10.1016/j.envc.2021.100199
Nunes, L. J. R. (2020). Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms. Clean Technologies, 2(3), 270–289. https://doi.org/10.3390/cleantechnol2030018
Ollinaho, O. I., & Kröger, M. (2021). Agroforestry transitions: The good, the bad and the ugly. Journal of Rural Studies, 82, 210–221. https://doi.org/10.1016/j.jrurstud.2021.01.016
Penna, D., Geris, J., Hopp, L., & Scandellari, F. (2020). Water sources for root water uptake: Using stable isotopes of hydrogen and oxygen as a research tool in agricultural and agroforestry systems. Agriculture, Ecosystems & Environment, 291, 106790. https://doi.org/10.1016/j.agee.2019.106790
Purwanto, E., Santoso, H., Jelsma, I., Widayati, A., Nugroho, H. Y. S. H., & Van Noordwijk, M. (2020). Agroforestry as Policy Option for Forest-Zone Oil Palm Production in Indonesia. Land, 9(12), 531. https://doi.org/10.3390/land9120531
Reang, D., Hazarika, A., Sileshi, G. W., Pandey, R., Das, A. K., & Nath, A. J. (2021). Assessing tree diversity and carbon storage during land use transitioning from shifting cultivation to indigenous agroforestry systems: Implications for REDD+ initiatives. Journal of Environmental Management, 298, 113470. https://doi.org/10.1016/j.jenvman.2021.113470
Rendón-Sandoval, F. J., Casas, A., Moreno-Calles, A. I., Torres-García, I., & García-Frapolli, E. (2020). Traditional Agroforestry Systems and Conservation of Native Plant Diversity of Seasonally Dry Tropical Forests. Sustainability, 12(11), 4600. https://doi.org/10.3390/su12114600
Rodriguez, L., Suárez, J. C., Pulleman, M., Guaca, L., Rico, A., Romero, M., Quintero, M., & Lavelle, P. (2021). Agroforestry systems in the Colombian Amazon improve the provision of soil ecosystem services. Applied Soil Ecology, 164, 103933. https://doi.org/10.1016/j.apsoil.2021.103933
Rodríguez, L., Suárez, J. C., Rodriguez, W., Artunduaga, K. J., & Lavelle, P. (2021). Agroforestry systems impact soil macroaggregation and enhance carbon storage in Colombian deforested Amazonia. Geoderma, 384, 114810. https://doi.org/10.1016/j.geoderma.2020.114810
Santoro, A., Venturi, M., Ben Maachia, S., Benyahia, F., Corrieri, F., Piras, F., & Agnoletti, M. (2020). Agroforestry Heritage Systems as Agrobiodiversity Hotspots. The Case of the Mountain Oases of Tunisia. Sustainability, 12(10), 4054. https://doi.org/10.3390/su12104054
Shin, S., Soe, K. T., Lee, H., Kim, T. H., Lee, S., & Park, M. S. (2020). A Systematic Map of Agroforestry Research Focusing on Ecosystem Services in the Asia-Pacific Region. Forests, 11(4), 368. https://doi.org/10.3390/f11040368
Smith, L. G., Westaway, S., Mullender, S., Ghaley, B. B., Xu, Y., Lehmann, L. M., Pisanelli, A., Russo, G., Borek, R., Wawer, R., Borz?cka, M., Sandor, M., Gliga, A., & Smith, J. (2022). Assessing the multidimensional elements of sustainability in European agroforestry systems. Agricultural Systems, 197, 103357. https://doi.org/10.1016/j.agsy.2021.103357
Suárez, L. R., Suárez Salazar, J. C., Casanoves, F., & Ngo Bieng, M. A. (2021). Cacao agroforestry systems improve soil fertility: Comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agriculture, Ecosystems & Environment, 314, 107349. https://doi.org/10.1016/j.agee.2021.107349
Torreiro, Y., Pérez, L., Piñeiro, G., Pedras, F., & Rodríguez-Abalde, A. (2020). The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy. Energies, 13(10), 2516. https://doi.org/10.3390/en13102516
Van Noordwijk, M. (2021). Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development. Land, 10(7), 699. https://doi.org/10.3390/land10070699
Yahya, M. S., Atikah, S. N., Mukri, I., Sanusi, R., Norhisham, A. R., & Azhar, B. (2022). Agroforestry orchards support greater avian biodiversity than monoculture oil palm and rubber tree plantations. Forest Ecology and Management, 513, 120177. https://doi.org/10.1016/j.foreco.2022.12
Authors
Copyright (c) 2024 Nandar Hlaing

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.