Integration of Remote Sensing Data and Geographic Information System for Mapping Landslide Risk Areas in Ambon City, Indonesia

Fekry Salim Hehanussa (1), Philia Christi Latue (2), Heinrich Rakuasa (3), Glendy Somae (4)
(1) Universitas Negeri Yogyakarta, Indonesia,
(2) Universitas Pattimura, Indonesia,
(3) National Research Tomsk State University, Russian Federation,
(4) Universitas Indonesia, Indonesia

Abstract

This research investigates the integration of remote sensing data and Geographic Information Systems (GIS) to map landslide risk areas in Ambon City, Indonesia, a region characterized by its hilly terrain and susceptibility to landslides. Utilizing various environmental variables such as slope gradient, land use, and rainfall patterns, the study employs a multi-criteria approach to assess landslide vulnerability and distribution. The findings reveal significant correlations between anthropogenic factors, such as urbanization, and increased landslide risk, highlighting the urgent need for sustainable urban planning and disaster risk management strategies. By providing a comprehensive landslide risk map, this study aims to support local authorities in making informed decisions to enhance community resilience and mitigate the impacts of landslides in Ambon City.

Full text article

Generated from XML file

References

Abay, A., Barbieri, G., & Woldearegay, K. (2019). GIS-based Landslide Susceptibility Evaluation Using Analytical Hierarchy Process (AHP) Approach: The Case of Tarmaber District, Ethiopia. Momona Ethiopian Journal of Science, 11(1), 14. https://doi.org/10.4314/mejs.v11i1.2

Abdul Muin, & Heinrich Rakuasa. (2023). Spatial Analysis of Landslide Potential Using Modification of the Storie In-dex Method in the Wae Batu Gajah Watershed, Ambon City, Indonesia. International Journal of Scientific Multidisciplinary Research, 1(3), 107–116. https://doi.org/10.55927/ijsmr.v1i3.3625

Aditian, A., Kubota, T., & Shinohara, Y. (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101–111. https://doi.org/https://doi.org/10.1016/j.geomorph.2018.06.006

Bai, Z., Liu, Q., & Liu, Y. (2021). Landslide susceptibility mapping using GIS-based machine learning algorithms for the Northeast Chongqing Area, China. Arabian Journal of Geosciences, 14(24), 2831. https://doi.org/10.1007/s12517-021-08871-w

Chen, W., & Li, Y. (2020). GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. CATENA, 195, 104777. https://doi.org/https://doi.org/10.1016/j.catena.2020.104777

Harist, M. C., Afif, H. A., Putri, D. N., & Shidiq, I. P. A. (2018). GIS modelling based on slope and morphology for landslide potential area in Wonosobo, Central Java. MATEC Web of Conferences, 229, 03004. https://doi.org/10.1051/matecconf/201822903004

Heinrich Rakuasa. (2024). Identification of Potential Landslide Areas in Nusaniwe Sub-district using Slope Morphology Method. Journal of Applied Research In Computer Science and Information Systems, 2(1), 114–120. https://doi.org/https://doi.org/10.61098/jarcis.v2i1.124

Heinrich Rakuasa, G. S. (2022). Analisis Spasial Kesesuaian dan Evaluasi Lahan Permukiman di Kota Ambon. Jurnal Sains Informasi Geografi (J SIG), 5(1), 1–9. https://doi.org/DOI: http://dx.doi.org/10.31314/j%20sig.v5i1.1432

Latue, P. C., Sihasale, D. A., & Rakuasa, H. (2023). Pemetaan Daerah Potensi Longsor di Kecamatan Leihitu Barat, Kabupaten Maluku Tengah, Menggunakan Metode Slope Morphology (SMORPH). INSOLOGI: Jurnal Sains Dan Teknologi, 2(3), 486–495. https://doi.org/https://doi.org/10.55123/insologi.v2i3.1912

Latue, P. C., & Rakuasa, H. (2023). Spatial Analysis of Landscape Suitability of Ambon City for Settlement Using Geographic Information System. Jurnal Riset Multidisiplin Dan Inovasi Teknologi, 1(02), 59–69. https://doi.org/10.59653/jimat.v1i02.218

Latue, T., Latue, P. C., Rakuasa, H., Somae, G., & Muin, A. (2023). Mapping of Landslide Prone Areas in Huamual Sub-District, Seram Bangian Barat Regency, Indonesia. Jurnal Riset Multidisiplin Dan Inovasi Teknologi, 1(02), 84–93. https://doi.org/10.59653/jimat.v1i02.239

Manakane, S. E., Latue, P. C., & Rakuasa, H. (2023). Identifikasi Daerah Rawan Longsor Di DAS Wai Batu Gajah, Kota Ambon Menggunakan Metode Slope Morphology Dan Indeks Storie. Gudang Jurnal Multidisiplin Ilmu, 1(1), 29–36.

Pakniany, Y., Latue, P. C., & Rakuasa, H. (2023). Pemetaan Daerah Rawan Longsor di Kecamatan Damer, Kabupaten Maluku Barat Daya, Provinsi Maluku. Jurnal Altifani Penelitian Dan Pengabdian Kepada Masyarakat, 3(2), 235–242. https://doi.org/https://doi.org/10.25008/altifani.v3i2.367

Rakuasa, H., & Latue, P. C. (2023). Monitoring Urban Sprawl in Ambon City Using Google Earth Engine: Memantau Urban Sprawl di Kota Ambon Menggunakan Mesin Google Earth. MULTIPLE: Journal of Global and Multidisciplinary, 1(2), 88–100.

Rakuasa, H., Ria Karuna, J., & Christi Latue, P. (2024). URBAN LANDSCAPE TRANSFORMATION: LAND COVER CHANGE ANALYSIS IN SIRIMAU SUB-DISTRICT, AMBON CITY. Journal of Data Analytics, Information, and Computer Science, 1(2), 63–70. https://doi.org/10.59407/jdaics.v1i2.649

Rakuasa, H., Supriatna, S., Tambunan, M. P., Salakory, M., & Pinoa, W. S. (2022). ANALISIS SPASIAL DAERAH POTENSI RAWAN LONGSOR DI KOTA AMBON DENGAN MENGGUNAKAN METODE SMORPH. Jurnal Tanah Dan Sumberdaya Lahan, 9(2), 213–221. https://doi.org/10.21776/ub.jtsl.2022.009.2.2

Rakuasa H, R. A. (2021). PEMETAAN KERENTANAN BENCANA TANAH LONGSOR BERBASIS SISTEM INFORMASI GEOGRAFIS DI KOTA AMBON. In BIG (Ed.), Prosiding Seminar Nasional Geomatika (pp. 327–336). BIG & MAPIN. https://doi.org/http://dx.doi.org/10.24895/SNG.2020.0-0.1148

Salakory, M., Rakuasa, H. (2022). Modeling of Cellular Automata Markov Chain for predicting the carrying capacity of Ambon City. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (JPSL), 12(2), 372–387. https://doi.org/https://doi.org/10.29244/jpsl.12.2.372-387

Skilodimou, H. D., Bathrellos, G. D., Koskeridou, E., Soukis, K., & Rozos, D. (2018). Physical and Anthropogenic Factors Related to Landslide Activity in the Northern Peloponnese, Greece. In Land (Vol. 7, Issue 3). https://doi.org/10.3390/land7030085

Somae, G., Supriatna, S., Manessa, M. D. M., & Rakuasa, H. (2022). SMORPH Application for Analysis of Landslide Prone Areas in Sirimau District, Ambon City. Social, Humanities, and Educational Studies (SHES): Conference Series, 5(4), 11. https://doi.org/10.20961/shes.v5i4.68936

Sugandhi, N., Supriatna, S., & Rakuasa, H. (2023). Identification of Landslide Prone Areas Using Slope Morphology Method in South Leitimur District, Ambon City. Jambura Geoscience Review, 5(1), 12–21. https://doi.org/https://doi.org/10.34312/jgeosrev.v5i1.14810

Ullah, F., Su, L., Cheng, L., & Alam, M. (2022). Landslide Hazard Assessment and Runout Simulation by Utilizing Remote Sensing, Geophysical, and Geological Techniques. Research Square. https://doi.org/10.21203/rs.3.rs-1113948/v1

Van Phong, T., Dam, N. D., Trinh, P. T., Van Dung, N., Hieu, N., Tran, C. Q., Van, T. D., Nguyen, Q. C., Prakash, I., & Pham, B. T. (2022). GIS-Based Logistic Regression Application for Landslide Susceptibility Mapping in Son La Hydropower Reservoir Basin (pp. 1841–1849). https://doi.org/10.1007/978-981-16-7160-9_186

Authors

Fekry Salim Hehanussa
fekrysalim@gmail.com (Primary Contact)
Philia Christi Latue
Heinrich Rakuasa
Glendy Somae
Hehanussa, F. S., Latue, P. C., Rakuasa, H., & Somae, G. (2024). Integration of Remote Sensing Data and Geographic Information System for Mapping Landslide Risk Areas in Ambon City, Indonesia. Journal of Selvicoltura Asean, 1(3), 105–119. https://doi.org/10.70177/jsa.v1i3.1185

Article Details

Most read articles by the same author(s)