Use of the Padlet Platform in Online Learning Media in Higher Education

Kayoko Nozaki (1), Matsuzaki Wuttipong (2), Heman Hiroyuki (3)
(1) Tohoku University, Japan,
(2) Shanghai Jiao Tong University, China,
(3) Chiang Mai University, Thailand

Abstract

Background. Students who are constrained in conducting face-to-face lectures so they cannot go to campus for other reasons, cannot carry out the learning process with lecturers and lecturers cannot also provide material to students so that the teaching and learning process is hindered because they cannot meet. This problem may be caused by the lack of innovation in the series of learning carried out in tertiary institutions.


Purpose. of this research is to search for information from students in tertiary institutions about the use of padlets.


Method. used is a qualitative method in which the research uses it as a guide so that the focus of the research is in accordance with the facts in the field and data that contains numbers so that the data can be formed by using the Google form as a means to make a questionnaire of questions given to correspondents who can used as a research subject, besides that the theoretical basis is also useful to provide an overview of the research setting and as material for research discussion.


Results. of this study are to provide that there is progress in using the padlet platform in learning this lecture in tertiary institutions.


Conclusion. of this study is that the use of the padlet platform makes it easier for students to study at tertiary institutions online through information and communication technology learning media, and others

Full text article

Generated from XML file

References

Alan, A. (2021). PENGGUNAA PLATFORM PADLET DEBAGAI MEDIA PEMBELAJARAN DARING PADA PERKULIAHAN TEKNOLOGI PENDIDIKAN ISLAM DIMASA PANDEMI COVID 19. 1.

Albert, M., & Beatty, B. J. (2014). Flipping the Classroom Applications to Curriculum Redesign for an Introduction to Management Course: Impact on Grades. Journal of Education for Business, 89(8), 419–424. https://doi.org/10.1080/08832323.2014.929559

Alkhamees, A. A., Alrashed, S. A., Alzunaydi, A. A., Almohimeed, A. S., & Aljohani, M. S. (2020). The psychological impact of COVID-19 pandemic on the general population of Saudi Arabia. Comprehensive Psychiatry, 102, 152192. https://doi.org/10.1016/j.comppsych.2020.152192

Bhayana, R., Som, A., Li, M. D., Carey, D. E., Anderson, M. A., Blake, M. A., Catalano, O., Gee, M. S., Hahn, P. F., Harisinghani, M., Kilcoyne, A., Lee, S. I., Mojtahed, A., Pandharipande, P. V., Pierce, T. T., Rosman, D. A., Saini, S., Samir, A. E., Simeone, J. F., … Kambadakone, A. (2020). Abdominal Imaging Findings in COVID-19: Preliminary Observations. Radiology, 297(1), E207–E215. https://doi.org/10.1148/radiol.2020201908

Billar, R. J., Kühlmann, A. Y. R., Schnater, J. M., Vlot, J., Tomas, J. J. P., Zijp, G. W., Rad, M., de Beer, S. A., Stevens, M. F., Poley, M. J., van Rosmalen, J., Jeekel, J. F., & Wijnen, R. M. H. (2020). Interventions with Music in PECTus excavatum treatment (IMPECT trial): A study protocol for a randomised controlled trial investigating the clinical effects of perioperative music interventions. BMJ Open, 10(7), e036380. https://doi.org/10.1136/bmjopen-2019-036380

Cecchin, A., & Fischer, M. (2020). Probabilistic Approach to Finite State Mean Field Games. Applied Mathematics & Optimization, 81(2), 253–300. https://doi.org/10.1007/s00245-018-9488-7

Chu, D. K., Akl, E. A., Duda, S., Solo, K., Yaacoub, S., Schünemann, H. J., Chu, D. K., Akl, E. A., El-harakeh, A., Bognanni, A., Lotfi, T., Loeb, M., Hajizadeh, A., Bak, A., Izcovich, A., Cuello-Garcia, C. A., Chen, C., Harris, D. J., Borowiack, E., … Schünemann, H. J. (2020). Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. The Lancet, 395(10242), 1973–1987. https://doi.org/10.1016/S0140-6736(20)31142-9

Cui, A., Li, H., Wang, D., Zhong, J., Chen, Y., & Lu, H. (2020). Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine, 29–30, 100587. https://doi.org/10.1016/j.eclinm.2020.100587

Cusácovich Torres, A. (2021). TradAction: Un proyecto colaborativo de Aprendizaje Servicio gestionado con Padlet. Anales de Filología Francesa, 29, 121–137. https://doi.org/10.6018/analesff.465941

Das, S., Amin, A. N., Lin, Y.-H., & Chan, H. S. (2018). Coarse-grained residue-based models of disordered protein condensates: Utility and limitations of simple charge pattern parameters. Physical Chemistry Chemical Physics, 20(45), 28558–28574. https://doi.org/10.1039/C8CP05095C

Dong, K., Deng, J., Ding, W., Wang, A. C., Wang, P., Cheng, C., Wang, Y.-C., Jin, L., Gu, B., Sun, B., & Wang, Z. L. (2018). Versatile Core-Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Real-Time Human-Interactive Sensing. Advanced Energy Materials, 8(23), 1801114. https://doi.org/10.1002/aenm.201801114

Goicolea, I., Marchal, B., Hurtig, A.-K., Vives-Cases, C., Briones-Vozmediano, E., & San Sebastián, M. (2019). Why do certain primary health care teams respond better to intimate partner violence than others? A multiple case study. Gaceta Sanitaria, 33(2), 169–176. https://doi.org/10.1016/j.gaceta.2017.10.005

Hofman, M. S., Lawrentschuk, N., Francis, R. J., Tang, C., Vela, I., Thomas, P., Rutherford, N., Martin, J. M., Frydenberg, M., Shakher, R., Wong, L.-M., Taubman, K., Ting Lee, S., Hsiao, E., Roach, P., Nottage, M., Kirkwood, I., Hayne, D., Link, E., … Murphy, D. G. (2020). Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. The Lancet, 395(10231), 1208–1216. https://doi.org/10.1016/S0140-6736(20)30314-7

Hou, Q., Huo, X., & Leng, J. (2020). A correlated random parameters tobit model to analyze the safety effects and temporal instability of factors affecting crash rates. Accident Analysis & Prevention, 134, 105326. https://doi.org/10.1016/j.aap.2019.105326

Islam, M. M., & Shamsuddoha, M. (2018). Coastal and marine conservation strategy for Bangladesh in the context of achieving blue growth and sustainable development goals (SDGs). Environmental Science & Policy, 87, 45–54. https://doi.org/10.1016/j.envsci.2018.05.014

James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, Z., Abera, S. F., Abil, O. Z., Abraha, H. N., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., Accrombessi, M. M. K., … Murray, C. J. L. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7

Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108

Kulkarni, J. A., Cullis, P. R., & van der Meel, R. (2018). Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. Nucleic Acid Therapeutics, 28(3), 146–157. https://doi.org/10.1089/nat.2018.0721

Laguna, L., Fiszman, S., Puerta, P., Chaya, C., & Tárrega, A. (2020). The impact of COVID-19 lockdown on food priorities. Results from a preliminary study using social media and an online survey with Spanish consumers. Food Quality and Preference, 86, 104028. https://doi.org/10.1016/j.foodqual.2020.104028

Mannucci, P. V., & Yong, K. (2018). The Differential Impact of Knowledge Depth and Knowledge Breadth on Creativity over Individual Careers. Academy of Management Journal, 61(5), 1741–1763. https://doi.org/10.5465/amj.2016.0529

Marchi, B., Zanoni, S., Zavanella, L. E., & Jaber, M. Y. (2019). Supply chain models with greenhouse gases emissions, energy usage, imperfect process under different coordination decisions. International Journal of Production Economics, 211, 145–153. https://doi.org/10.1016/j.ijpe.2019.01.017

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015

Mueller, J., Melwani, S., Loewenstein, J., & Deal, J. J. (2018). Reframing the Decision-Makers’ Dilemma: Towards a Social Context Model of Creative Idea Recognition. Academy of Management Journal, 61(1), 94–110. https://doi.org/10.5465/amj.2013.0887

Olfson, M., Wall, M. M., Liu, S.-M., & Blanco, C. (2018). Cannabis Use and Risk of Prescription Opioid Use Disorder in the United States. American Journal of Psychiatry, 175(1), 47–53. https://doi.org/10.1176/appi.ajp.2017.17040413

Pak, A., Adegboye, O. A., Adekunle, A. I., Rahman, K. M., McBryde, E. S., & Eisen, D. P. (2020). Economic Consequences of the COVID-19 Outbreak: The Need for Epidemic Preparedness. Frontiers in Public Health, 8, 241. https://doi.org/10.3389/fpubh.2020.00241

Parsa, A. B., Movahedi, A., Taghipour, H., Derrible, S., & Mohammadian, A. (Kouros). (2020). Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accident Analysis & Prevention, 136, 105405. https://doi.org/10.1016/j.aap.2019.105405

Piper, W. H., Tischler, K. B., & Reinke, A. (2018). Common Loons respond adaptively to a black fly that reduces nesting success. The Auk, 135(3), 788–797. https://doi.org/10.1642/AUK-17-239.1

Purtscher, F. R. S., Christanell, L., Schulte, M., Seiwald, S., Rödl, M., Ober, I., Maruschka, L. K., Khoder, H., Schwartz, H. A., Bendeif, E.-E., & Hofer, T. S. (2023). Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach. The Journal of Physical Chemistry C, 127(3), 1560–1575. https://doi.org/10.1021/acs.jpcc.2c05103

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

Rempe, D. M., & Dietrich, W. E. (2018). Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proceedings of the National Academy of Sciences, 115(11), 2664–2669. https://doi.org/10.1073/pnas.1800141115

Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135. https://doi.org/10.1080/00207543.2018.1533261

Strongman, H., Gadd, S., Matthews, A., Mansfield, K. E., Stanway, S., Lyon, A. R., dos-Santos-Silva, I., Smeeth, L., & Bhaskaran, K. (2019). Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: A population-based cohort study using multiple linked UK electronic health records databases. The Lancet, 394(10203), 1041–1054. https://doi.org/10.1016/S0140-6736(19)31674-5

Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2019). Deep learning for sensor-based activity recognition: A survey. Pattern Recognition Letters, 119, 3–11. https://doi.org/10.1016/j.patrec.2018.02.010

Zhang, D., Gao, F., Jakovli?, I., Zou, H., Zhang, J., Li, W. X., & Wang, G. T. (2020). PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1), 348–355. https://doi.org/10.1111/1755-0998.13096

Zhang, Z. (Victor), & Hyland, K. (2018). Student engagement with teacher and automated feedback on L2 writing. Assessing Writing, 36, 90–102. https://doi.org/10.1016/j.asw.2018.02.004

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet, 395(10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3

Authors

Kayoko Nozaki
kayokonozaki@gmail.com (Primary Contact)
Matsuzaki Wuttipong
Heman Hiroyuki
Nozaki, K., Wuttipong, M., & Hiroyuki, H. (2023). Use of the Padlet Platform in Online Learning Media in Higher Education. Journal Emerging Technologies in Education, 1(1), 26–46. https://doi.org/10.55849/jete.v1i1.194

Article Details

No Related Submission Found