Simulated Learning in STEM Education: Bridging Theory and Practice Through AR

Titik Haryanti (1), Dina Destari (2), Noura Rizqyaannisa Hidayat (3), Agung Yuliyanto Nugroho (4), Achmad Nashrul Waahib (5)
(1) Politeknik Tunas Pemuda, Indonesia,
(2) State Islamic University Sultan Aji Muhammad Idris Samarinda, Indonesia,
(3) Brawijaya University, Indonesia,
(4) Universitas Cendekia Mitra Indonesia, Indonesia,
(5) Universitas KH Abdul Chalim Mojokerto, Indonesia

Abstract

Background. The integration of augmented reality (AR) into STEM education has gained attention for its potential to bridge the gap between theoretical knowledge and practical application. Traditional methods of teaching STEM subjects often struggle to provide students with immersive, hands-on learning experiences, which are crucial for understanding complex concepts. AR, with its ability to create simulated environments, offers a solution by making abstract theories more tangible and interactive. However, the impact of AR-based simulated learning on student outcomes remains underexplored.


Purpose. This study aims to investigate the effectiveness of AR in enhancing STEM education by simulating real-world applications of theoretical concepts.


Method. The research utilized a mixed-method approach, combining quantitative assessments of student performance and qualitative feedback from students and educators. A sample of 300 high school students participated, using AR-enhanced learning modules in subjects like physics, chemistry, and biology. Data were collected over a semester, focusing on improvements in comprehension, engagement, and practical application of STEM knowledge.


Results. The results showed a significant improvement in students' understanding of STEM concepts, with a 28% increase in test scores compared to traditional learning methods. Student engagement levels were also higher, as AR provided interactive, visually rich learning experiences. Educators reported that AR helped students connect abstract theories to real-world applications, fostering a deeper understanding of STEM subjects.


Conclusion. In conclusion, the study demonstrates that AR-based simulated learning is an effective tool for enhancing comprehension and engagement in STEM education. These findings suggest that AR has the potential to transform how STEM subjects are taught, making learning more immersive and applicable to real-life contexts.

Full text article

Generated from XML file

References

AlGerafi, M. A. M., Zhou, Y., Oubibi, M., & Wijaya, T. T. (2023). Unlocking the Potential: A Comprehensive Evaluation of Augmented Reality and Virtual Reality in Education. Electronics (Switzerland), 12(18). Scopus. https://doi.org/10.3390/electronics12183953

Auer M.E. & Tsiatsos T. (Eds.). (2021). 13th International Conference on Interactive Mobile Communication, Technologies and Learning, IMCL 2019. Advances in Intelligent Systems and Computing, 1192 AISC. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091526145&partnerID=40&md5=9439c3aea5483955f4a4e66446957adb

Basiouni A. & Frasson C. (Eds.). (2024). 1st International Workshop on Breaking Barriers with Generative Intelligence, BBGI 2024. Communications in Computer and Information Science, 2162 CCIS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200755330&partnerID=40&md5=77644a6054d954002e6ac58b28efee4e

Caratozzolo, P., Alvarez-Delgado, A., & Hosseini, S. (2021). Creativity in criticality: Tools for generation Z students in STEM. In Klinger T., Kollmitzer C., & Pester A. (Eds.), IEEE Global Eng. Edu. Conf., EDUCON (Vols. 2021-April, pp. 591–598). IEEE Computer Society; Scopus. https://doi.org/10.1109/EDUCON46332.2021.9454110

Chen, H., Sun, D., Zhang, X., & Li, Y. (2021). Augmented Reality Technology Projects of Tea Culture for China’s Secondary Students. IEEE Integr. STEM Educ. Conf., ISEC, 122–126. Scopus. https://doi.org/10.1109/ISEC52395.2021.9764066

Chung, C.-Y., & Hsiao, I.-H. (2021). Exploring the effect of augmented reality on verbal communication and code-editing in a collaborative programming task. In Chang M., Chen N.-S., Sampson D.G., & Tlili A. (Eds.), Proc. - IEEE Int. Conf. Adv. Learn. Technol., ICALT (pp. 395–397). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ICALT52272.2021.00126

Da Costa Coelho, F., Francisco De Magalhaes Netto, J., & Almeida, T. O. (2022). A Case Study Using Augmented Reality for Teaching Organic Compound Reactions. Proc. Front. Educ. Conf. FIE, 2022-October. Scopus. https://doi.org/10.1109/FIE56618.2022.9962460

Denson, C., & Bayati, N. (2023). Augmented Botswanan Learning Experience. ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172074755&partnerID=40&md5=8b0b04e00c89d6e76eea1b7c82c17a8e

Dukalskaya, I. V., & Tabueva, I. N. (2022). Promoting Augmented Reality Technology in Teaching English Language to Non-Linguistic Students in Higher Education. European Journal of Contemporary Education, 11(1), 47–58. Scopus. https://doi.org/10.13187/ejced.2022.1.47

Faridi, H., Tuli, N., Mantri, A., Singh, G., & Gargrish, S. (2021). A framework utilizing augmented reality to improve critical thinking ability and learning gain of the students in Physics. Computer Applications in Engineering Education, 29(1), 258–273. Scopus. https://doi.org/10.1002/cae.22342

Gonzalez-Almaguer, C., Aguirre, A., Roman, O., Acuña, A., Zubieta, C., & Perez, P. (2021). Virtual And Augmented Reality To Exploit Stem-Skills-Based Learning For Engineering Students Using The Tec21 Educational Model. In Grierson H., Bohemia E., & Buck L. (Eds.), Proc. Int. Conf. Eng. Prod. Des. Educ., E PDE. The Design Society; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121684705&partnerID=40&md5=1f1458e87c81d064f84bffcec39313e7

Hemme, C. L., Carley, R., Norton, A., Ghumman, M., Nguyen, H., Ivone, R., Menon, J. U., Shen, J., Bertin, M., King, R., Leibovitz, E., Bergstrom, R., & Cho, B. (2023). Developing virtual and augmented reality applications for science, technology, engineering and math education. BioTechniques, 75(1), 343–352. Scopus. https://doi.org/10.2144/btn-2023-0029

Holopainen, N., Soro, A., & Brereton, M. (2022). Using Augmented Reality to Explore Gender and Power Dynamics in STEM Higher Education. In Martin C., Mckay D., Rogerson M., Cumbo B., Wadley G., Sweetser P., Taylor J.L., Hespanhol L., Tsimeris J., Xi M., Turner J., Yoo S., Cooper N., Rahman J., Andres J., Pillai A.G., & Kutay C. (Eds.), ACM Int. Conf. Proc. Ser. (pp. 22–31). Association for Computing Machinery; Scopus. https://doi.org/10.1145/3572921.3576203

Kulkarni, R. V., & Harne, R. (2024). Adoption And Usage Of Augmented Reality-Based Virtual Laboratories Tool For Engineering Studies. Journal of Information Technology Education: Innovations in Practice, 23. Scopus. https://doi.org/10.28945/5351

McNerney, E., Faull, J., Brown, S., McNerney, L., Foley, R., Lonergan, J., Rickard, A., Doganca Kucuk, Z., Behan, A., Essel, B., Mensah, I. O., Castillo Campo, Y., Cullen, H., Ffrench, J., Abernethy, R., Cleary, P., Byrne, A., & Cahalane, C. (2023). SatelliteSkill5—An Augmented Reality Educational Experience Teaching Remote Sensing through the UN Sustainable Development Goals. Remote Sensing, 15(23). Scopus. https://doi.org/10.3390/rs15235480

Meiselwitz G., Moallem A., Zaphiris P., Ioannou A., Ioannou A., Sottilare R.A., Schwarz J., & Fang X. (Eds.). (2022). 24th International Conference on Human-Computer Interaction, HCII 2022. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13517 LNCS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144470773&partnerID=40&md5=ea09d9bc039dfa4f4882b39d69b2250f

Mintii, M. M., Sharmanova, N. M., Mankuta, A. O., Palchevska, O. S., & Semerikov, S. O. (2023). Selection of pedagogical conditions for training STEM teachers to use augmented reality technologies in their work. In Kiv A.E., P. O. B. 653 Ben-Gurion University of the Negev Beer Sheva, Kiv A.E., 26 Staroportofrankivska Str. South Ukrainian National Pedagogical University named after K. D. Ushynsky Odesa, Semerikov S.O., A. of C. and N. S. Kryvyi Rih State Pedagogical University 54 Gagarin Ave., Kryvyi Rih, Semerikov S.O., 11 Vitalii Matusevych Str. Kryvyi Rih National University Kryvyi Rih, Semerikov S.O., 9 M. Berlynskoho Str. Institute for Digitalisation of Education of the NAES of Ukraine Kyiv, Striuk A.M., 11 Vitalii Matusevych Str. Kryvyi Rih National University Kryvyi Rih, Striuk A.M., 54 Gagarin Ave. Academy of Cognitive and Natural Sciences Kryvyi Rih, Osadchyi V.V., 18/2 Bulvarno-Kudriavska Str. Borys Grinchenko Kyiv University Kyiv, Osadchyi V.V., 54 Gagarin Ave. Academy of Cognitive and Natural Sciences Kryvyi Rih, Vakaliuk T.A., … 54 Gagarin Ave. Kryvyi Rih State Pedagogical University Kryvyi Rih (Eds.), J. Phys. Conf. Ser. (Vol. 2611, Issue 1). Institute of Physics; Scopus. https://doi.org/10.1088/1742-6596/2611/1/012022

Misak, J. (2022). Familiar Technologies And Learning Principles To Attract And Retain Stem Student Interest In First-Year Writing. In Writ. Steam: Composition, STEM, and a New Humanities (pp. 127–145). Taylor and Francis; Scopus. https://doi.org/10.4324/9781003123347-11

Nagpal, N., Rahmawati, Y., & Mardiah, A. (2023). Integrating Augmented Reality (AR) and Virtual Reality (VR) in transformation of teaching and learning pedagogy in education 4.0. In Archit. And Technol. Adv. Of Educ. 4.0 (pp. 199–228). IGI Global; Scopus. https://doi.org/10.4018/9781668492857.ch009

Nebytova, L. A., Katrenko, M. V., Savin, D. I., & Zhuravleva, Y. I. (2021). Augmented reality in the training process of children with hearing disorders. In Petrenko S.A. & Tarkhov D.A. (Eds.), CEUR Workshop Proc. (Vol. 2834, pp. 330–339). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103254538&partnerID=40&md5=7ad9948ae8c3fd0ca35798c25963be43

Nunes, M., Adão, T., Shahrabadi, S., Capela, A., Carneiro, D., Branco, P., Magalhães, L., Morais, R., & Peres, E. (2024). ARPocketLab—A Mobile Augmented Reality System for Pedagogic Applications. Computers, 13(6). Scopus. https://doi.org/10.3390/computers13060148

Palazon, B., & Santacruz-Valencia, L. P. (2022). Drawing on Augmented Reality to Develop STEM Competencies in Primary Education. Proc. Front. Educ. Conf. FIE, 2022-October. Scopus. https://doi.org/10.1109/FIE56618.2022.9962692

Psycharis, S., Sdravopoulou, K., & Botsari, E. (2023). Augmented Reality in STEM Education: Mapping Out the Future. In Guralnick D., Auer M.E., & Poce A. (Eds.), Lect. Notes Networks Syst.: Vol. 767 LNNS (pp. 677–688). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-41637-8_55

Radu, I., Hv, V., & Schneider, B. (2021). Unequal Impacts of Augmented Reality on Learning and Collaboration during Robot Programming with Peers. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW3). Scopus. https://doi.org/10.1145/3432944

Rajaram, S., & Nebeling, M. (2022). Paper Trail: An Immersive Authoring System for Augmented Reality Instructional Experiences. Conf Hum Fact Comput Syst Proc. Conference on Human Factors in Computing Systems - Proceedings. Scopus. https://doi.org/10.1145/3491102.3517486

Ruiz-Muñoz, G. F., Yépez-González, D. A., Romero Amores, N. V., & Cali Proaño Ángela, F. (2024). Augmented reality’s impact on STEM learning. Salud, Ciencia y Tecnologia, 4. Scopus. https://doi.org/10.56294/saludcyt20241202

Santana, R., Rossi, G., Rybarczyk, Y., Méndez, G. G., Vera, F., Rodríguez, A., & Mendoza, P. (2022). Studying the User Experience of an Educational AR-Based App for Smart Glasses. In Rocha A., Adeli H., Dzemyda G., & Moreira F. (Eds.), Lect. Notes Networks Syst.: Vol. 468 LNNS (pp. 266–275). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-04826-5_26

Schiano Lo Moriello, R., Liccardo, A., Bonavolonta, F., Caputo, E., Gloria, A., & De Alteriis, G. (2022). On the Suitability of Augmented Reality for Safe Experiments on Radioactive Materials in Physics Educational Applications. IEEE Access, 10, 54185–54196. Scopus. https://doi.org/10.1109/ACCESS.2022.3175869

Sendari, S., Wibawanto, S., Jasmine, J., Jiono, M., Puspitasari, P., Diantoro, M., & Nur, H. (2021). Integrating Robo-PEM with AR Application for Introducing Fuel Cell Implementation. Int. Conf. Electr., Electron. Inf. Eng.: Technol. Breakthr. Greater New Life, ICEEIE. 7th International Conference on Electrical, Electronics and Information Engineering: Technological Breakthrough for Greater New Life, ICEEIE 2021. Scopus. https://doi.org/10.1109/ICEEIE52663.2021.9616683

Silva Díaz, F., Carrillo Rosúa, J., Fernández Ferrer, G., Marfil Carmona, R., & Narváez, R. (2024). Assessment of immersive technologies and STEM focus in initial teacher training. RIED-Revista Iberoamericana de Educacion a Distancia, 27(1), 139–162. Scopus. https://doi.org/10.5944/ried.27.1.37688

Tandon, I., Maldonado, V., Wilkerson, M., Walls, A., Rao, R. R., & Elsaadany, M. (2024). Immersive virtual reality-based learning as a supplement for biomedical engineering labs: Challenges faced and lessons learned. Frontiers in Medical Technology, 6. Scopus. https://doi.org/10.3389/fmedt.2024.1301004

Wibowo, F. C., Nasbey, H., Sanjaya, L. A., Darman, D. R., & Ahmad, N. J. (2021). Interactive Book Augmented Reality (IBAR) for lesson physics on STEM. J. Phys. Conf. Ser., 2019(1). Scopus. https://doi.org/10.1088/1742-6596/2019/1/012039

Yi-Ming Kao, G., & Ruan, C.-A. (2022). Designing and evaluating a high interactive augmented reality system for programming learning. Computers in Human Behavior, 132. Scopus. https://doi.org/10.1016/j.chb.2022.107245

Yurchenko, A., Rozumenko, A., Rozumenko, A., Momot, R., & Semenikhina, O. (2023). CLOUD TECHNOLOGIES IN EDUCATION: THE BIBLIOGRAPHIC REVIEW. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, 13(4), 79–84. Scopus. https://doi.org/10.35784/iapgos.4421

Zahara, M., Abdurrahman, A., Herlina, K., Widyanti, R., & Agustiana, L. (2021). Teachers’ perceptions of 3D technology-integrated student worksheet on magnetic field material: A preliminary research on augmented reality in STEM learning. In Pane E., Saregar A., & Deta U.A. (Eds.), IOP Conf. Ser. Earth Environ. Sci. (Vol. 1796, Issue 1). IOP Publishing Ltd; Scopus. https://doi.org/10.1088/1742-6596/1796/1/012083

Zulkifli, A. N., Mohamed, N. F. F., Qasim, M. M., & Bakar, N. A. A. (2021). Prototyping and Usability Evaluation of Road Safety Education Courseware for Primary Schools in Malaysia. International Journal of Interactive Mobile Technologies, 15(6), 32–47. Scopus. https://doi.org/10.3991/ijim.v15i06.20609

Authors

Titik Haryanti
titikharyanti19@gmail.com (Primary Contact)
Dina Destari
Noura Rizqyaannisa Hidayat
Agung Yuliyanto Nugroho
Achmad Nashrul Waahib
Haryanti, T., Destari, D., Hidayat, N. R., Nugroho, A. Y., & Waahib, A. N. (2024). Simulated Learning in STEM Education: Bridging Theory and Practice Through AR. Journal Emerging Technologies in Education, 2(5). https://doi.org/10.70177/jete.v2i5.1368

Article Details

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.

The Future of AR-Driven Immersive Classrooms: Pedagogical Impacts for the Next Generation

Abdul Sahib, Achmad Nashrul Waahib, M. Syahputra, Aminah Aminah, Singgih Prastawa
Abstract View : 188
Download :68

The Impact of Applying Augmented Reality Technology in Learning on Student Learning Experiences

Meriyati Meriyati, Mahon Nitin, Snyder Bradford, Vandan Wiliyanti
Abstract View : 211
Download :79