Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta

Cut Mutia Alsafiah (1), Imam Tabroni (2), Elladdadi Mark (3), Kailie Maharjan (4)
(1) Universitas Islam Bunga Bangsa Cirebon, Indonesia,
(2) Universitas Islam Bunga Bangsa Cirebon, Indonesia,
(3) University of Alberta Edmonton, Canada,
(4) Technical University of Munich, Germany

Abstract

This study aims to produce a valid labyrinth learning media to improve the ability of prosocial behavior in children aged 5-6 years.  This research is a development research with the development model used by Sugiyono.   In this study, researchers only used 7 (seven) stages, namely knowing problems and potential, data collection, product design, design validation, design revision, product trials and product manufacturing.  The next stage was not carried out due to cost and time constraints. The data collection technique used is a questionnaire, where the questionnaire is validated by material experts, media experts and educators. The type of data generated is quantitative and qualitative data. The average percentage result of the pretest conducted on 3 children is 10.6%, proving that the child's condition is still in the undeveloped stage. Then the posttest was carried out, namely the condition after the child was given the labyrinth media, the average percentage result of this posttest was 14.6% which proved that the child experienced a change in condition to develop as expected. So it can be concluded that the Labyrinth media to improve the ability of prosocial behavior of children aged 5-6 years has met the criteria for validity.


 

Full text article

Generated from XML file

References

Albrecht, E., & Chin, K. J. (2020). Advances in regional anaesthesia and acute pain management: A narrative review. Anaesthesia, 75(S1). https://doi.org/10.1111/anae.14868

Arora, S., Singh, H., Sharma, M., Sharma, S., & Anand, P. (2019). A New Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search Algorithm for Unconstrained Function Optimization and Feature Selection. IEEE Access, 7, 26343–26361. https://doi.org/10.1109/ACCESS.2019.2897325

Bai, B., Guo, Z., Zhou, C., Zhang, W., & Zhang, J. (2021). Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering. Information Sciences, 546, 42–59. https://doi.org/10.1016/j.ins.2020.07.069

Caniëls, M. C. J., Chiocchio, F., & Van Loon, N. P. A. A. (2019). Collaboration in project teams: The role of mastery and performance climates. International Journal of Project Management, 37(1), 1–13. https://doi.org/10.1016/j.ijproman.2018.09.006

Chen, Y., Zhong, H., Wang, J., Wan, X., Li, Y., Pan, W., Li, N., & Tang, B. (2019). Catalase-like metal–organic framework nanoparticles to enhance radiotherapy in hypoxic cancer and prevent cancer recurrence. Chemical Science, 10(22), 5773–5778. https://doi.org/10.1039/C9SC00747D

Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., & Perc, M. (2021). Complex networks and deep learning for EEG signal analysis. Cognitive Neurodynamics, 15(3), 369–388. https://doi.org/10.1007/s11571-020-09626-1

Golden, T. D., & Gajendran, R. S. (2019). Unpacking the Role of a Telecommuter’s Job in Their Performance: Examining Job Complexity, Problem Solving, Interdependence, and Social Support. Journal of Business and Psychology, 34(1), 55–69. https://doi.org/10.1007/s10869-018-9530-4

Hassan, M. H., Houssein, E. H., Mahdy, M. A., & Kamel, S. (2021). An improved Manta ray foraging optimizer for cost-effective emission dispatch problems. Engineering Applications of Artificial Intelligence, 100, 104155. https://doi.org/10.1016/j.engappai.2021.104155

He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. https://doi.org/10.1038/s41591-018-0307-0

Hu, L., He, S., Han, Z., Xiao, H., Su, S., Weng, M., & Cai, Z. (2019). Monitoring housing rental prices based on social media:An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy, 82, 657–673. https://doi.org/10.1016/j.landusepol.2018.12.030

Low, E. S., Ong, P., & Cheah, K. C. (2019). Solving the optimal path planning of a mobile robot using improved Q-learning. Robotics and Autonomous Systems, 115, 143–161. https://doi.org/10.1016/j.robot.2019.02.013

Penconek, T., Tate, K., Bernardes, A., Lee, S., Micaroni, S. P. M., Balsanelli, A. P., De Moura, A. A., & Cummings, G. G. (2021). Determinants of nurse manager job satisfaction: A systematic review. International Journal of Nursing Studies, 118, 103906. l

Peng, H., Wang, H., Du, B., Bhuiyan, M. Z. A., Ma, H., Liu, J., Wang, L., Yang, Z., Du, L., Wang, S., & Yu, P. S. (2020). Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting. Information Sciences, 521, 277–290. https://doi.org/10.1016/j.ins.2020.01.043

Pfattheicher, S., Nielsen, Y. A., & Thielmann, I. (2022). Prosocial behavior and altruism: A review of concepts and definitions. Current Opinion in Psychology, 44, 124–129. https://doi.org/10.1016/j.copsyc.2021.08.021

Song, J., She, J., Chen, D., & Pan, F. (2020). Latest research advances on magnesium and magnesium alloys worldwide. Journal of Magnesium and Alloys, 8(1), 1–41. https://doi.org/10.1016/j.jma.2020.02.003

Van Doren, J., Arns, M., Heinrich, H., Vollebregt, M. A., Strehl, U., & K. Loo, S. (2019). Sustained effects of neurofeedback in ADHD: A systematic review and meta-analysis. European Child & Adolescent Psychiatry, 28(3), 293–305. https://doi.org/10.1007/s00787-018-1121-4

Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2), 118–144. https://doi.org/10.1016/j.jsis.2019.01.003

Wang, F., Wang, H., Wang, H., Li, G., & Situ, G. (2019). Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Optics Express, 27(18), 25560. https://doi.org/10.1364/OE.27.025560

Wang, S., Chen, X., & Szolnoki, A. (2019). Exploring optimal institutional incentives for public cooperation. Communications in Nonlinear Science and Numerical Simulation, 79, 104914. https://doi.org/10.1016/j.cnsns.2019.104914

Yang, Z., Yu, W., Liang, P., Guo, H., Xia, L., Zhang, F., Ma, Y., & Ma, J. (2019). Deep transfer learning for military object recognition under small training set condition. Neural Computing and Applications, 31(10), 6469–6478. https://doi.org/10.1007/s00521-018-3468-3

Zhang, Y., & Jin, Z. (2020). Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems. Expert Systems with Applications, 148, 113246. https://doi.org/10.1016/j.eswa.2020.113246

Authors

Cut Mutia Alsafiah
cmalsafiah@gmail.com (Primary Contact)
Imam Tabroni
Elladdadi Mark
Kailie Maharjan
Alsafiah, C. M., Tabroni, I., Mark, E., & Maharjan, K. (2023). Development of Labyrinth Media to Stimulate Prosocial Behavior Skills of 5-6 years old Children in Purwakarta. Journal of Computer Science Advancements, 1(1), 62–72. https://doi.org/10.55849/jsca.v1i1.453

Article Details

Most read articles by the same author(s)

1 2 > >> 

Development of Media Matching Box to stimulate symbolic thinking skills in children aged 4-5 years

Iis Uswatun Hasanah, Imam Tabroni, Benjamin Brunel, Milton Alan
Abstract View : 140
Download :36