Optimization of Biocompatibility of Natural Polymer Hydrogels for Targeted Drug Delivery Applications

Ava Lee (1), Jaden Tan (2), Rachel Chan (3)
(1) Nanyang Technological University (NTU), Singapore,
(2) Singapore Institute of Technology (SIT), Singapore,
(3) Singapore University of Social Sciences (SUSS), Singapore

Abstract

This study aims to optimize the biocompatibility of natural polymer hydrogels for targeted drug delivery applications. Crosslinking modifications are applied to natural polymers such as alginate, agarose, and chitosan, with the aim of increasing cell viability and reducing cytotoxicity. The results showed that modified hydrogels had higher cell viability (85–90%) and lower cytotoxicity compared to unmodified hydrogels. In addition, these modifications do not trigger immunological or inflammatory reactions in the cells of the human body tested. This study suggests that the crosslinking technique can be an effective solution in developing more biocompatible natural polymer hydrogels, which can be used for targeted drug delivery applications. However, for broader clinical applications, further research is needed to explore other modification methods and test more types of polymers.


 

Full text article

Generated from XML file

References

Adelnia, H., Tran, H. D. N., Little, P. J., Blakey, I., & Ta, H. T. (2021). Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications. ACS Biomaterials Science & Engineering, 7(6), 2083–2105. https://doi.org/10.1021/acsbiomaterials.1c00150

Al-Mamun, N. S., Mairaj Deen, K., Haider, W., Asselin, E., & Shabib, I. (2020). Corrosion behavior and biocompatibility of additively manufactured 316L stainless steel in a physiological environment: The effect of citrate ions. Additive Manufacturing, 34, 101237. https://doi.org/10.1016/j.addma.2020.101237

Athinarayanan, J., Alshatwi, A. A., & Subbarayan Periasamy, V. (2020). Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohydrate Polymers, 235, 115961. https://doi.org/10.1016/j.carbpol.2020.115961

Bao, L., Tang, J., Hong, F. F., Lu, X., & Chen, L. (2020). Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications. Carbohydrate Polymers, 239, 116246. https://doi.org/10.1016/j.carbpol.2020.116246

Bazin, T., Magnaudeix, A., Mayet, R., Carles, P., Julien, I., Demourgues, A., Gaudon, M., & Champion, E. (2021). Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics. Ceramics International, 47(10), 13644–13654. https://doi.org/10.1016/j.ceramint.2021.01.225

Bucevi?ius, J., Kostiuk, G., Gerasimait?, R., Gilat, T., & Lukinavi?ius, G. (2020). Enhancing the biocompatibility of rhodamine fluorescent probes by a neighbouring group effect. Chemical Science, 11(28), 7313–7323. https://doi.org/10.1039/D0SC02154G

Butler, J., Handy, R. D., Upton, M., & Besinis, A. (2023). Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS Nano, 17(8), 7064–7092. https://doi.org/10.1021/acsnano.2c12488

Chen, B., Wu, S., & Ye, Q. (2021). Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility. Carbohydrate Polymers, 259, 117707. https://doi.org/10.1016/j.carbpol.2021.117707

Chen, D., Zhou, X., Chang, L., Wang, Y., Li, W., & Qin, J. (2021). Hemostatic Self-Healing Hydrogel with Excellent Biocompatibility Composed of Polyphosphate-Conjugated Functional PNIPAM-Bearing Acylhydrazide. Biomacromolecules, 22(5), 2272–2283. https://doi.org/10.1021/acs.biomac.1c00349

Chen, S., Zhao, R., Sun, X., Wang, H., Li, L., & Liu, J. (2023). Toxicity and Biocompatibility of Liquid Metals. Advanced Healthcare Materials, 12(3), 2201924. https://doi.org/10.1002/adhm.202201924

Crawford, L., Wyatt, M., Bryers, J., & Ratner, B. (2021). Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Advanced Healthcare Materials, 10(11), 2002153. https://doi.org/10.1002/adhm.202002153

Daneshmandi, L., Barajaa, M., Tahmasbi Rad, A., Sydlik, S. A., & Laurencin, C. T. (2021). Graphene?Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials, 10(1), 2001414. https://doi.org/10.1002/adhm.202001414

Dowlath, M. J. H., Musthafa, S. A., Mohamed Khalith, S. B., Varjani, S., Karuppannan, S. K., Ramanujam, G. M., Arunachalam, A. M., Arunachalam, K. D., Chandrasekaran, M., Chang, S. W., Chung, W. J., & Ravindran, B. (2021). Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles. Environmental Research, 201, 111585. https://doi.org/10.1016/j.envres.2021.111585

Gao, F., Hu, Y., Li, G., Liu, S., Quan, L., Yang, Z., Wei, Y., & Pan, C. (2020). Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility. Bioactive Materials, 5(3), 611–623. https://doi.org/10.1016/j.bioactmat.2020.04.016

Gao, Y., Wang, Y., Dai, Y., Wang, Q., Xiang, P., Li, Y., & Gao, G. (2022). Amylopectin based hydrogel strain sensor with good biocompatibility, high toughness and stable anti-swelling in multiple liquid media. European Polymer Journal, 164, 110981. https://doi.org/10.1016/j.eurpolymj.2021.110981

García-Mintegui, C., Córdoba, L. C., Buxadera-Palomero, J., Marquina, A., Jiménez-Piqué, E., Ginebra, M.-P., Cortina, J. L., & Pegueroles, M. (2021). Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioactive Materials, 6(12), 4430–4446. https://doi.org/10.1016/j.bioactmat.2021.04.015

Geng, L., Hu, S., Cui, M., Wu, J., Huang, A., Shi, S., & Peng, X. (2021). Muscle-inspired double-network hydrogels with robust mechanical property, biocompatibility and ionic conductivity. Carbohydrate Polymers, 262, 117936. https://doi.org/10.1016/j.carbpol.2021.117936

He, S.-B., Balasubramanian, P., Chen, Z.-W., Zhang, Q., Zhuang, Q.-Q., Peng, H.-P., Deng, H.-H., Xia, X.-H., & Chen, W. (2020). Protein-Supported RuO2 Nanoparticles with Improved Catalytic Activity, In Vitro Salt Resistance, and Biocompatibility: Colorimetric and Electrochemical Biosensing of Cellular H2 O2. ACS Applied Materials & Interfaces, 12(13), 14876–14883. https://doi.org/10.1021/acsami.0c00778

Hernandez, J. L., & Woodrow, K. A. (2022). Medical Applications of Porous Biomaterials: Features of Porosity and Tissue?Specific Implications for Biocompatibility. Advanced Healthcare Materials, 11(9), 2102087. https://doi.org/10.1002/adhm.202102087

Ho, Y.-H., Man, K., Joshi, S. S., Pantawane, M. V., Wu, T.-C., Yang, Y., & Dahotre, N. B. (2020). In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Bioactive Materials, 5(4), 891–901. https://doi.org/10.1016/j.bioactmat.2020.06.009

Jing, Z., Cao, Q., & Jun, H. (2021). Corrosion, wear and biocompatibility of hydroxyapatite bio-functionally graded coating on titanium alloy surface prepared by laser cladding. Ceramics International, 47(17), 24641–24651. https://doi.org/10.1016/j.ceramint.2021.05.186

Khan, M. U. A., Abd Razak, S. I., Mehboob, H., Abdul Kadir, M. R., Anand, T. J. S., Inam, F., Shah, S. A., Abdel-Haliem, M. E. F., & Amin, R. (2021). Synthesis and Characterization of Silver-Coated Polymeric Scaffolds for Bone Tissue Engineering: Antibacterial and In Vitro Evaluation of Cytotoxicity and Biocompatibility. ACS Omega, 6(6), 4335–4346. https://doi.org/10.1021/acsomega.0c05596

Kutner, N., Kunduru, K. R., Rizik, L., & Farah, S. (2021). Recent Advances for Improving Functionality, Biocompatibility, and Longevity of Implantable Medical Devices and Deliverable Drug Delivery Systems. Advanced Functional Materials, 31(44), 2010929. https://doi.org/10.1002/adfm.202010929

Li, J., Li, J., Pu, Y., Li, S., Gao, W., & He, B. (2021). PDT-Enhanced Ferroptosis by a Polymer Nanoparticle with pH-Activated Singlet Oxygen Generation and Superb Biocompatibility for Cancer Therapy. Biomacromolecules, 22(3), 1167–1176. https://doi.org/10.1021/acs.biomac.0c01679

Li, S., Tan, L., & Meng, X. (2020). Nanoscale Metal?Organic Frameworks: Synthesis, Biocompatibility, Imaging Applications, and Thermal and Dynamic Therapy of Tumors. Advanced Functional Materials, 30(13), 1908924. https://doi.org/10.1002/adfm.201908924

Liu, P., Zhang, D., Dai, Y., Lin, J., Li, Y., & Wen, C. (2020). Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques. Acta Biomaterialia, 114, 485–496. https://doi.org/10.1016/j.actbio.2020.07.048

Liu, X., Zhang, X., Chen, Q., Pan, Y., Liu, C., & Shen, C. (2021). A simple superhydrophobic/superhydrophilic Janus-paper with enhanced biocompatibility by PDMS and candle soot coating for actuator. Chemical Engineering Journal, 406, 126532. https://doi.org/10.1016/j.cej.2020.126532

Liu, Y., Zhang, Q., Zhou, N., Tan, J., Ashley, J., Wang, W., Wu, F., Shen, J., & Zhang, M. (2020). Study on a novel poly (vinyl alcohol)/graphene oxide-citicoline sodium-lanthanum wound dressing: Biocompatibility, bioactivity, antimicrobial activity, and wound healing effect. Chemical Engineering Journal, 395, 125059. https://doi.org/10.1016/j.cej.2020.125059

Molaei, M., Fattah-alhosseini, A., Nouri, M., & Nourian, A. (2022). Systematic optimization of corrosion, bioactivity, and biocompatibility behaviors of calcium-phosphate plasma electrolytic oxidation (PEO) coatings on titanium substrates. Ceramics International, 48(5), 6322–6337. https://doi.org/10.1016/j.ceramint.2021.11.175

Munir, K., Lin, J., Wen, C., Wright, P. F. A., & Li, Y. (2020). Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta Biomaterialia, 102, 493–507. https://doi.org/10.1016/j.actbio.2019.12.001

Podsiedlik, M., Markowicz-Piasecka, M., & Sikora, J. (2020). Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery. Chemico-Biological Interactions, 332, 109305. https://doi.org/10.1016/j.cbi.2020.109305

Rehman, M. M., Ur Rehman, H. M. M., Kim, W. Y., Sherazi, S. S. H., Rao, M. W., Khan, M., & Muhammad, Z. (2021). Biomaterial-Based Nonvolatile Resistive Memory Devices toward Ecofriendliness and Biocompatibility. ACS Applied Electronic Materials, 3(7), 2832–2861. https://doi.org/10.1021/acsaelm.1c00078

Ren, X., Yang, M., Yang, T., Xu, C., Ye, Y., Wu, X., Zheng, X., Wang, B., Wan, Y., & Luo, Z. (2021). Highly Conductive PPy–PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application. ACS Applied Materials & Interfaces, 13(21), 25374–25382. https://doi.org/10.1021/acsami.1c04432

Sathiyavimal, S., Vasantharaj, S., Kaliannan, T., & Pugazhendhi, A. (2020). Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Carbohydrate Polymers, 241, 116243. https://doi.org/10.1016/j.carbpol.2020.116243

Schmitz, S. I., Widholz, B., Essers, C., Becker, M., Tulyaganov, D. U., Moghaddam, A., Gonzalo De Juan, I., & Westhauser, F. (2020). Superior biocompatibility and comparable osteoinductive properties: Sodium-reduced fluoride-containing bioactive glass belonging to the CaO–MgO–SiO2 system as a promising alternative to 45S5 bioactive glass. Bioactive Materials, 5(1), 55–65. https://doi.org/10.1016/j.bioactmat.2019.12.005

Singh, N., Kim, J., Kim, J., Lee, K., Zunbul, Z., Lee, I., Kim, E., Chi, S.-G., & Kim, J. S. (2023). Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioactive Materials, 21, 358–380. https://doi.org/10.1016/j.bioactmat.2022.08.016

Taha, M. A., Youness, R. A., & Ibrahim, M. (2020). Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications. Ceramics International, 46(15), 23599–23610. https://doi.org/10.1016/j.ceramint.2020.06.132

Vejarano, R., & Gil-Calderón, A. (2021). Commercially Available Non-Saccharomyces Yeasts for Winemaking: Current Market, Advantages over Saccharomyces, Biocompatibility, and Safety. Fermentation, 7(3), 171. https://doi.org/10.3390/fermentation7030171

Wang, Q., Zhao, Y., Shi, Z., Sun, X., Bu, T., Zhang, C., Mao, Z., Li, X., & Wang, L. (2021). Magnetic amino-functionalized-MOF(M = Fe, Ti, Zr)@COFs with superior biocompatibility: Performance and mechanism on adsorption of azo dyes in soft drinks. Chemical Engineering Journal, 420, 129955. https://doi.org/10.1016/j.cej.2021.129955

Williams, D. F. (2022). Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. Bioactive Materials, 10, 306–322. https://doi.org/10.1016/j.bioactmat.2021.08.014

Xiao, F., Cao, B., Wen, L., Su, Y., Zhan, M., Lu, L., & Hu, X. (2020). Photosensitizer conjugate-functionalized poly(hexamethylene guanidine) for potentiated broad-spectrum bacterial inhibition and enhanced biocompatibility. Chinese Chemical Letters, 31(9), 2516–2519. https://doi.org/10.1016/j.cclet.2020.06.038

Authors

Ava Lee
avalee@gmail.com (Primary Contact)
Jaden Tan
Rachel Chan
Lee, A., Tan, J., & Chan, R. (2024). Optimization of Biocompatibility of Natural Polymer Hydrogels for Targeted Drug Delivery Applications. Journal of Biomedical and Techno Nanomaterials, 1(4), 175–184. https://doi.org/10.70177/jbtn.v1i4.1763

Article Details