The Role of Big Data Technology in Predicting and Managing the Spread of Infectious Diseases
Abstract
The spread of infectious diseases is a global problem that requires effective approaches for prediction and management. In recent years, Big Data technology has become a major concern in the healthcare field due to its ability to quickly collect, store and analyze large and diverse volumes of data. This opens up new opportunities to improve prediction and management of the spread of infectious diseases. This research aims to investigate the role of Big Data technology in predicting and managing the spread of infectious diseases. We want to identify effective methods for using big data to predict disease spread patterns and manage responses to them. The research method used in this research is a qualitative method in the form of literature analysis about the use of Big Data technology in the health sector, case studies of the implementation of Big Data systems to predict the spread of disease. The research results show that Big Data technology can improve predictions of the spread of infectious diseases by integrating data from various sources, including clinical, geographic, demographic and social data. Integrated Big Data systems can provide a better understanding of the factors that influence the spread of disease and enable faster and more effective decision making in responding to outbreaks. The conclusion of this research is that it confirms that Big Data technology has great potential in improving the prediction and management of the spread of infectious diseases. By effectively leveraging big data, we can improve our understanding of the dynamics of disease spread and implement more timely and efficient intervention strategies. Therefore, further investment and development in Big Data technology in the health sector is essential to strengthen capacity to face global health challenges.
Full text article
References
Adunlin, G., Diaby, V., & Xiao, H. (2015). Application of multicriteria decision analysis in health care: A systematic review and bibliometric analysis. Health Expectations, 18(6), 1894–1905. https://doi.org/10.1111/hex.12287
Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T., & Lee, S. (2016). Health Fog: A novel framework for health and wellness applications. The Journal of Supercomputing, 72(10), 3677–3695. https://doi.org/10.1007/s11227-016-1634-x
Ahmad, T., Murad, M. A., Baig, M., & Hui, J. (2021). Research trends in COVID-19 vaccine: A bibliometric analysis. Human Vaccines & Immunotherapeutics, 17(8), 2367–2372. https://doi.org/10.1080/21645515.2021.1886806
Awotunde, J. B., Jimoh, R. G., Oladipo, I. D., Abdulraheem, M., Jimoh, T. B., & Ajamu, G. J. (2021). Big Data and Data Analytics for an Enhanced COVID-19 Epidemic Management. In D. Oliva, S. A. Hassan, & A. Mohamed (Eds.), Artificial Intelligence for COVID-19 (Vol. 358, pp. 11–29). Springer International Publishing. https://doi.org/10.1007/978-3-030-69744-0_2
Bansal, S., Chowell, G., Simonsen, L., Vespignani, A., & Viboud, C. (2016). Big Data for Infectious Disease Surveillance and Modeling. Journal of Infectious Diseases, 214(suppl 4), S375–S379. https://doi.org/10.1093/infdis/jiw400
Colorafi, K. J., & Evans, B. (2016). Qualitative Descriptive Methods in Health Science Research. HERD: Health Environments Research & Design Journal, 9(4), 16–25. https://doi.org/10.1177/1937586715614171
Corsi, A., De Souza, F. F., Pagani, R. N., & Kovaleski, J. L. (2021). Big data analytics as a tool for fighting pandemics: A systematic review of literature. Journal of Ambient Intelligence and Humanized Computing, 12(10), 9163–9180. https://doi.org/10.1007/s12652-020-02617-4
Epizitone, A., Moyane, S. P., & Agbehadji, I. E. (2022). Health Information System and Health Care Applications Performance in the Healthcare Arena: A Bibliometric Analysis. Healthcare, 10(11), 2273. https://doi.org/10.3390/healthcare10112273
Gale, N. K., Heath, G., Cameron, E., Rashid, S., & Redwood, S. (2013). Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Medical Research Methodology, 13(1), 117. https://doi.org/10.1186/1471-2288-13-117
Hassan Zadeh, A., Zolbanin, H. M., Sharda, R., & Delen, D. (2019). Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis. Information Systems Frontiers, 21(4), 743–760. https://doi.org/10.1007/s10796-018-9893-0
Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. https://doi.org/10.1038/nature06536
Leite, H., Hodgkinson, I. R., & Gruber, T. (2020). New development: ‘Healing at a distance’—telemedicine and COVID-19. Public Money & Management, 40(6), 483–485. https://doi.org/10.1080/09540962.2020.1748855
Liang, H., Tsui, B. Y., Ni, H., Valentim, C. C. S., Baxter, S. L., Liu, G., Cai, W., Kermany, D. S., Sun, X., Chen, J., He, L., Zhu, J., Tian, P., Shao, H., Zheng, L., Hou, R., Hewett, S., Li, G., Liang, P., … Xia, H. (2019). Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nature Medicine, 25(3), 433–438. https://doi.org/10.1038/s41591-018-0335-9
Martin, B. I., Mirza, S. K., Spina, N., Spiker, W. R., Lawrence, B., & Brodke, D. S. (2019). Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States, 2004 to 2015. Spine, 44(5), 369–376. https://doi.org/10.1097/BRS.0000000000002822
Murdoch, T. B., & Detsky, A. S. (2013). The Inevitable Application of Big Data to Health Care. JAMA, 309(13), 1351. https://doi.org/10.1001/jama.2013.393
Nandi, A., Yan, L.-J., Jana, C. K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 1–19. https://doi.org/10.1155/2019/9613090
Priscila, G., & Robin, P. (2021). Pengaisan Big Data & Dunia Kesehatan. PUBLIC CORNER, 16(1), 37–57. https://doi.org/10.24929/fisip.v16i1.1472
Rachmani, E., Dewi, F., Haikal, H., & Setiono, O. (2023). Pengukuran Literasi Kesehatan Digital Kader Kesehatan Desa Penadaran Menggunakan SI-Cerdik: Digital Health Literacy Competencies of Community Health Workers in Penadaran Village, Grobogan. Indonesian Journal of Health Information Management Services, 3(1), 7–10. https://doi.org/10.33560/ijhims.v3i1.57
Raimundo, R., & Rosário, A. (2021). Blockchain System in the Higher Education. European Journal of Investigation in Health, Psychology and Education, 11(1), 276–293. https://doi.org/10.3390/ejihpe11010021
Revolusi Industri 4.0: Big Data, Implementasi Pada Berbagai Sektor Industri (Bagian 2). (2014). JURNAL SISTEM INFORMASI UNIVERSITAS SURYADARMA, 10(1). https://doi.org/10.35968/jsi.v10i1.991
Shi, H., Wang, J., Cheng, J., Qi, X., Ji, H., Struchiner, C. J., Villela, D. A., Karamov, E. V., & Turgiev, A. S. (2023). Big data technology in infectious diseases modeling, simulation, and prediction after the COVID-19 outbreak. Intelligent Medicine, 3(2), 85–96. https://doi.org/10.1016/j.imed.2023.01.002
Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001
Smith, A. C., Thomas, E., Snoswell, C. L., Haydon, H., Mehrotra, A., Clemensen, J., & Caffery, L. J. (2020). Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). Journal of Telemedicine and Telecare, 26(5), 309–313. https://doi.org/10.1177/1357633X20916567
Smith, J., & Firth, J. (2011). Qualitative data analysis: The framework approach. Nurse Researcher, 18(2), 52–62. https://doi.org/10.7748/nr2011.01.18.2.52.c8284
Subhramanyam, C. S., Wang, C., Hu, Q., & Dheen, S. T. (2019). Microglia-mediated neuroinflammation in neurodegenerative diseases. Seminars in Cell & Developmental Biology, 94, 112–120. https://doi.org/10.1016/j.semcdb.2019.05.004
Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3–13. https://doi.org/10.1016/j.techfore.2015.12.019
Wójcik, O. P., Brownstein, J. S., Chunara, R., & Johansson, M. A. (2014). Public health for the people: Participatory infectious disease surveillance in the digital age. Emerging Themes in Epidemiology, 11(1), 7. https://doi.org/10.1186/1742-7622-11-7
Woo, H., Cho, Y., Shim, E., Lee, J.-K., Lee, C.-G., & Kim, S. H. (2016). Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea. Journal of Medical Internet Research, 18(7), e177. https://doi.org/10.2196/jmir.4955
Yu, S., Liu, M., Dou, W., Liu, X., & Zhou, S. (2017). Networking for Big Data: A Survey. IEEE Communications Surveys & Tutorials, 19(1), 531–549. https://doi.org/10.1109/COMST.2016.2610963
Yudistira, N. (2021). Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 11(2), 78. https://doi.org/10.36448/expert.v11i2.2063
Zhang, Y., Bambrick, H., Mengersen, K., Tong, S., Feng, L., Zhang, L., Liu, G., Xu, A., & Hu, W. (2020). Using big data to predict pertussis infections in Jinan city, China: A time series analysis. International Journal of Biometeorology, 64(1), 95–104. https://doi.org/10.1007/s00484-019-01796-w
Zhang, Y., Yakob, L., Bonsall, M. B., & Hu, W. (2019). Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data. Scientific Reports, 9(1), 3262. https://doi.org/10.1038/s41598-019-39871-2
Authors
Copyright (c) 2024 Loso Judijanto, Hermansyah Hermansyah, Kori Puspita Ningsih, Dito Anurogo, Mohamad Firdaus

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.