The Role of Big Data Technology in Predicting and Managing the Spread of Infectious Diseases

Loso Judijanto (1), Hermansyah Hermansyah (2), Kori Puspita Ningsih (3), Dito Anurogo (4), Mohamad Firdaus (5)
(1) IPOSS Jakarta, Indonesia,
(2) Politeknik Kesehatan Kemenkes Aceh, Indonesia,
(3) Universitas Jenderal Achmad Yani Yogyakarta, Indonesia,
(4) Universitas Muhammadiyah Makassar, Indonesia,
(5) Universitas Indraprasta PGRI, Indonesia

Abstract

The spread of infectious diseases is a global problem that requires effective approaches for prediction and management. In recent years, Big Data technology has become a major concern in the healthcare field due to its ability to quickly collect, store and analyze large and diverse volumes of data. This opens up new opportunities to improve prediction and management of the spread of infectious diseases. This research aims to investigate the role of Big Data technology in predicting and managing the spread of infectious diseases. We want to identify effective methods for using big data to predict disease spread patterns and manage responses to them. The research method used in this research is a qualitative method in the form of literature analysis about the use of Big Data technology in the health sector, case studies of the implementation of Big Data systems to predict the spread of disease. The research results show that Big Data technology can improve predictions of the spread of infectious diseases by integrating data from various sources, including clinical, geographic, demographic and social data. Integrated Big Data systems can provide a better understanding of the factors that influence the spread of disease and enable faster and more effective decision making in responding to outbreaks. The conclusion of this research is that it confirms that Big Data technology has great potential in improving the prediction and management of the spread of infectious diseases. By effectively leveraging big data, we can improve our understanding of the dynamics of disease spread and implement more timely and efficient intervention strategies. Therefore, further investment and development in Big Data technology in the health sector is essential to strengthen capacity to face global health challenges.

Full text article

Generated from XML file

References

Adunlin, G., Diaby, V., & Xiao, H. (2015). Application of multicriteria decision analysis in health care: A systematic review and bibliometric analysis. Health Expectations, 18(6), 1894–1905. https://doi.org/10.1111/hex.12287

Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T., & Lee, S. (2016). Health Fog: A novel framework for health and wellness applications. The Journal of Supercomputing, 72(10), 3677–3695. https://doi.org/10.1007/s11227-016-1634-x

Ahmad, T., Murad, M. A., Baig, M., & Hui, J. (2021). Research trends in COVID-19 vaccine: A bibliometric analysis. Human Vaccines & Immunotherapeutics, 17(8), 2367–2372. https://doi.org/10.1080/21645515.2021.1886806

Awotunde, J. B., Jimoh, R. G., Oladipo, I. D., Abdulraheem, M., Jimoh, T. B., & Ajamu, G. J. (2021). Big Data and Data Analytics for an Enhanced COVID-19 Epidemic Management. In D. Oliva, S. A. Hassan, & A. Mohamed (Eds.), Artificial Intelligence for COVID-19 (Vol. 358, pp. 11–29). Springer International Publishing. https://doi.org/10.1007/978-3-030-69744-0_2

Bansal, S., Chowell, G., Simonsen, L., Vespignani, A., & Viboud, C. (2016). Big Data for Infectious Disease Surveillance and Modeling. Journal of Infectious Diseases, 214(suppl 4), S375–S379. https://doi.org/10.1093/infdis/jiw400

Colorafi, K. J., & Evans, B. (2016). Qualitative Descriptive Methods in Health Science Research. HERD: Health Environments Research & Design Journal, 9(4), 16–25. https://doi.org/10.1177/1937586715614171

Corsi, A., De Souza, F. F., Pagani, R. N., & Kovaleski, J. L. (2021). Big data analytics as a tool for fighting pandemics: A systematic review of literature. Journal of Ambient Intelligence and Humanized Computing, 12(10), 9163–9180. https://doi.org/10.1007/s12652-020-02617-4

Epizitone, A., Moyane, S. P., & Agbehadji, I. E. (2022). Health Information System and Health Care Applications Performance in the Healthcare Arena: A Bibliometric Analysis. Healthcare, 10(11), 2273. https://doi.org/10.3390/healthcare10112273

Gale, N. K., Heath, G., Cameron, E., Rashid, S., & Redwood, S. (2013). Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Medical Research Methodology, 13(1), 117. https://doi.org/10.1186/1471-2288-13-117

Hassan Zadeh, A., Zolbanin, H. M., Sharda, R., & Delen, D. (2019). Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis. Information Systems Frontiers, 21(4), 743–760. https://doi.org/10.1007/s10796-018-9893-0

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. https://doi.org/10.1038/nature06536

Leite, H., Hodgkinson, I. R., & Gruber, T. (2020). New development: ‘Healing at a distance’—telemedicine and COVID-19. Public Money & Management, 40(6), 483–485. https://doi.org/10.1080/09540962.2020.1748855

Liang, H., Tsui, B. Y., Ni, H., Valentim, C. C. S., Baxter, S. L., Liu, G., Cai, W., Kermany, D. S., Sun, X., Chen, J., He, L., Zhu, J., Tian, P., Shao, H., Zheng, L., Hou, R., Hewett, S., Li, G., Liang, P., … Xia, H. (2019). Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nature Medicine, 25(3), 433–438. https://doi.org/10.1038/s41591-018-0335-9

Martin, B. I., Mirza, S. K., Spina, N., Spiker, W. R., Lawrence, B., & Brodke, D. S. (2019). Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States, 2004 to 2015. Spine, 44(5), 369–376. https://doi.org/10.1097/BRS.0000000000002822

Murdoch, T. B., & Detsky, A. S. (2013). The Inevitable Application of Big Data to Health Care. JAMA, 309(13), 1351. https://doi.org/10.1001/jama.2013.393

Nandi, A., Yan, L.-J., Jana, C. K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 1–19. https://doi.org/10.1155/2019/9613090

Priscila, G., & Robin, P. (2021). Pengaisan Big Data & Dunia Kesehatan. PUBLIC CORNER, 16(1), 37–57. https://doi.org/10.24929/fisip.v16i1.1472

Rachmani, E., Dewi, F., Haikal, H., & Setiono, O. (2023). Pengukuran Literasi Kesehatan Digital Kader Kesehatan Desa Penadaran Menggunakan SI-Cerdik: Digital Health Literacy Competencies of Community Health Workers in Penadaran Village, Grobogan. Indonesian Journal of Health Information Management Services, 3(1), 7–10. https://doi.org/10.33560/ijhims.v3i1.57

Raimundo, R., & Rosário, A. (2021). Blockchain System in the Higher Education. European Journal of Investigation in Health, Psychology and Education, 11(1), 276–293. https://doi.org/10.3390/ejihpe11010021

Revolusi Industri 4.0: Big Data, Implementasi Pada Berbagai Sektor Industri (Bagian 2). (2014). JURNAL SISTEM INFORMASI UNIVERSITAS SURYADARMA, 10(1). https://doi.org/10.35968/jsi.v10i1.991

Shi, H., Wang, J., Cheng, J., Qi, X., Ji, H., Struchiner, C. J., Villela, D. A., Karamov, E. V., & Turgiev, A. S. (2023). Big data technology in infectious diseases modeling, simulation, and prediction after the COVID-19 outbreak. Intelligent Medicine, 3(2), 85–96. https://doi.org/10.1016/j.imed.2023.01.002

Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001

Smith, A. C., Thomas, E., Snoswell, C. L., Haydon, H., Mehrotra, A., Clemensen, J., & Caffery, L. J. (2020). Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). Journal of Telemedicine and Telecare, 26(5), 309–313. https://doi.org/10.1177/1357633X20916567

Smith, J., & Firth, J. (2011). Qualitative data analysis: The framework approach. Nurse Researcher, 18(2), 52–62. https://doi.org/10.7748/nr2011.01.18.2.52.c8284

Subhramanyam, C. S., Wang, C., Hu, Q., & Dheen, S. T. (2019). Microglia-mediated neuroinflammation in neurodegenerative diseases. Seminars in Cell & Developmental Biology, 94, 112–120. https://doi.org/10.1016/j.semcdb.2019.05.004

Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3–13. https://doi.org/10.1016/j.techfore.2015.12.019

Wójcik, O. P., Brownstein, J. S., Chunara, R., & Johansson, M. A. (2014). Public health for the people: Participatory infectious disease surveillance in the digital age. Emerging Themes in Epidemiology, 11(1), 7. https://doi.org/10.1186/1742-7622-11-7

Woo, H., Cho, Y., Shim, E., Lee, J.-K., Lee, C.-G., & Kim, S. H. (2016). Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea. Journal of Medical Internet Research, 18(7), e177. https://doi.org/10.2196/jmir.4955

Yu, S., Liu, M., Dou, W., Liu, X., & Zhou, S. (2017). Networking for Big Data: A Survey. IEEE Communications Surveys & Tutorials, 19(1), 531–549. https://doi.org/10.1109/COMST.2016.2610963

Yudistira, N. (2021). Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 11(2), 78. https://doi.org/10.36448/expert.v11i2.2063

Zhang, Y., Bambrick, H., Mengersen, K., Tong, S., Feng, L., Zhang, L., Liu, G., Xu, A., & Hu, W. (2020). Using big data to predict pertussis infections in Jinan city, China: A time series analysis. International Journal of Biometeorology, 64(1), 95–104. https://doi.org/10.1007/s00484-019-01796-w

Zhang, Y., Yakob, L., Bonsall, M. B., & Hu, W. (2019). Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data. Scientific Reports, 9(1), 3262. https://doi.org/10.1038/s41598-019-39871-2

Authors

Loso Judijanto
losojudijantobumn5656@gmail.com (Primary Contact)
Hermansyah Hermansyah
Kori Puspita Ningsih
Dito Anurogo
Mohamad Firdaus
Judijanto, L., Hermansyah, H., Ningsih, K. P., Anurogo, D., & Firdaus, M. (2024). The Role of Big Data Technology in Predicting and Managing the Spread of Infectious Diseases. Journal of World Future Medicine, Health and Nursing, 2(2), 216–227. https://doi.org/10.70177/health.v2i2.757

Article Details

Most read articles by the same author(s)

The Effect of Emergency Management Skills Training for Nurses

Rani Fitriani, Sisilia Prima Yanuaria Buka, Matteson Niva, Kailie Maharjan, Embrechts Xavier
Abstract View : 281
Download :381

Evaluation of the Effectiveness of Emergency Management Training for Adult Nurses with a Prepost-Test Approach

Endang Soelistyowati, Woolnough Cale, Mahon Nitin, Meredith Tandon
Abstract View : 127
Download :115