Greenhouse Technology Innovations for Sustainable Agriculture in the United Kingdom
Abstract
Greenhouse technology is an important innovation in facing the challenges of sustainable agriculture in the UK, especially in the face of climate change and increasing food needs. This research aims to explore the application of advanced technologies in greenhouses, such as automation sensors, hydroponics, aquaponics, and renewable energy, as well as their impact on agricultural productivity and sustainability. Descriptive-qualitative research methods are used to gain insights from farmers and experts in the field of agricultural technology, through interviews and direct observations. The results showed a significant improvement in resource use efficiency, with a reduction in water use of up to 50% and an increase in crop yields of up to 30%. The adoption of renewable energy in greenhouses also plays a role in reducing carbon emissions and operational costs. In conclusion, greenhouse technology innovation has the potential to be an important solution to achieving sustainable agriculture in the UK, but more research is needed to evaluate the long-term impact on the environment.
Full text article
References
Arora, S., Murmu, G., Mukherjee, K., Saha, S., & Maity, D. (2022). A comprehensive overview of nanotechnology in sustainable agriculture. Journal of Biotechnology, 355, 21–41. https://doi.org/10.1016/j.jbiotec.2022.06.007
Asadi, H., Ghorbani, M., Rezaei-Rashti, M., Abrishamkesh, S., Amirahmadi, E., Chengrong, C., & Gorji, M. (2021). Application of Rice Husk Biochar for Achieving Sustainable Agriculture and Environment. Rice Science, 28(4), 325–343. https://doi.org/10.1016/j.rsci.2021.05.004
Asibor, J. O., Clough, P. T., Nabavi, S. A., & Manovic, V. (2022). A country-level assessment of the deployment potential of greenhouse gas removal technologies. Journal of Environmental Management, 323, 116211. https://doi.org/10.1016/j.jenvman.2022.116211
Asibor, J. O., Clough, P. T., Nabavi, S. A., & Manovic, V. (2023). A machine learning approach for country-level deployment of greenhouse gas removal technologies. International Journal of Greenhouse Gas Control, 130, 103995. https://doi.org/10.1016/j.ijggc.2023.103995
Atieno, M., Herrmann, L., Nguyen, H. T., Phan, H. T., Nguyen, N. K., Srean, P., Than, M. M., Zhiyong, R., Tittabutr, P., Shutsrirung, A., Bräu, L., & Lesueur, D. (2020). Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. Journal of Environmental Management, 275, 111300. https://doi.org/10.1016/j.jenvman.2020.111300
Aznar-Sánchez, J. A., Velasco-Muñoz, J. F., López-Felices, B., & Román-Sánchez, I. M. (2020). An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture. International Journal of Environmental Research and Public Health, 17(2), 664. https://doi.org/10.3390/ijerph17020664
Ball, P. J. (2021). A Review of Geothermal Technologies and Their Role in Reducing Greenhouse Gas Emissions in the USA. Journal of Energy Resources Technology, 143(1), 010903. https://doi.org/10.1115/1.4048187
Banboye, F. D., Ngwabie, M. N., Eneighe, S. A., & Nde, D. B. (2020). Assessment of greenhouse technologies on the drying behavior of cocoa beans. Food Science & Nutrition, 8(6), 2748–2757. https://doi.org/10.1002/fsn3.1565
Bieser, J. C. T., Hintemann, R., Hilty, L. M., & Beucker, S. (2023). A review of assessments of the greenhouse gas footprint and abatement potential of information and communication technology. Environmental Impact Assessment Review, 99, 107033. https://doi.org/10.1016/j.eiar.2022.107033
Cristofano, F., El-Nakhel, C., & Rouphael, Y. (2021). Biostimulant Substances for Sustainable Agriculture: Origin, Operating Mechanisms and Effects on Cucurbits, Leafy Greens, and Nightshade Vegetables Species. Biomolecules, 11(8), 1103. https://doi.org/10.3390/biom11081103
Eker, M., & Çoban, H. O. (2021). A Simple Example on Life Cycle Assessment of Wood Harvesting Technologies in Turkish Forestry to Mitigate Greenhouse Gas Emissions. European Journal of Forest Engineering, 7(2), 67–76. https://doi.org/10.33904/ejfe.1036102
Escamilla-García, A., Soto-Zarazúa, G. M., Toledano-Ayala, M., Rivas-Araiza, E., & Gastélum-Barrios, A. (2020). Applications of Artificial Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development. Applied Sciences, 10(11), 3835. https://doi.org/10.3390/app10113835
Faniyi, B., & Luo, Z. (2023). A Physics-Based Modelling and Control of Greenhouse System Air Temperature Aided by IoT Technology. Energies, 16(6), 2708. https://doi.org/10.3390/en16062708
Fu, H., Tan, P., Wang, R., Li, S., Liu, H., Yang, Y., & Wu, Z. (2022). Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. Journal of Hazardous Materials, 424, 127494. https://doi.org/10.1016/j.jhazmat.2021.127494
Goglio, P., Williams, A. G., Balta-Ozkan, N., Harris, N. R. P., Williamson, P., Huisingh, D., Zhang, Z., & Tavoni, M. (2020). Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. Journal of Cleaner Production, 244, 118896. https://doi.org/10.1016/j.jclepro.2019.118896
Gorjian, S., Calise, F., Kant, K., Ahamed, M. S., Copertaro, B., Najafi, G., Zhang, X., Aghaei, M., & Shamshiri, R. R. (2021). A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. Journal of Cleaner Production, 285, 124807. https://doi.org/10.1016/j.jclepro.2020.124807
Grandsir, C., Falagán, N., & Alamar, M. C. (2023). Application of novel technologies to reach net?zero greenhouse gas emissions in the fresh pasteurised milk supply chain: A review. International Journal of Dairy Technology, 76(1), 38–50. https://doi.org/10.1111/1471-0307.12926
Guo, B., Zhou, B., Zhang, Z., Li, K., Wang, J., Chen, J., & Papadakis, G. (2024). A Critical Review of the Status of Current Greenhouse Technology in China and Development Prospects. Applied Sciences, 14(13), 5952. https://doi.org/10.3390/app14135952
Guo, Q., Qi, F., Mu, R., Yu, G., Ma, G., & Meng, Q. (2023). Advances in sustainable wastewater treatment: Microalgal–bacterial consortia process, greenhouse gas reduction and energy recovery technologies. Water and Environment Journal, 37(2), 192–205. https://doi.org/10.1111/wej.12839
Harris, A., Soban, D., Smyth, B. M., & Best, R. (2020). A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies. Applied Energy, 261, 114422. https://doi.org/10.1016/j.apenergy.2019.114422
Hazarika, A., Yadav, M., Yadav, D. K., & Yadav, H. S. (2022). An overview of the role of nanoparticles in sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 43, 102399. https://doi.org/10.1016/j.bcab.2022.102399
Hu, S., Yang, Y., Zheng, H., Mi, C., Ma, T., & Shi, R. (2022). A framework for assessing sustainable agriculture and rural development: A case study of the Beijing-Tianjin-Hebei region, China. Environmental Impact Assessment Review, 97, 106861. https://doi.org/10.1016/j.eiar.2022.106861
Koukounaras, A. (2020). Advanced Greenhouse Horticulture: New Technologies and Cultivation Practices. Horticulturae, 7(1), 1. https://doi.org/10.3390/horticulturae7010001
Ladha, J. K., Jat, M. L., Stirling, C. M., Chakraborty, D., Pradhan, P., Krupnik, T. J., Sapkota, T. B., Pathak, H., Rana, D. S., Tesfaye, K., & Gerard, B. (2020). Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. In Advances in Agronomy (Vol. 163, pp. 39–116). Elsevier. https://doi.org/10.1016/bs.agron.2020.05.006
Lefebvre, D., Williams, A., Kirk, G. J. D., Meersmans, J., Sohi, S., Goglio, P., & Smith, P. (2021). An anticipatory life cycle assessment of the use of biochar from sugarcane residues as a greenhouse gas removal technology. Journal of Cleaner Production, 312, 127764. https://doi.org/10.1016/j.jclepro.2021.127764
Maraveas, C., Karavas, C.-S., Loukatos, D., Bartzanas, T., Arvanitis, K. G., & Symeonaki, E. (2023). Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions. Agriculture, 13(7), 1464. https://doi.org/10.3390/agriculture13071464
McNicol, L. C., Bowen, J. M., Ferguson, H. J., Bell, J., Dewhurst, R. J., & Duthie, C.-A. (2024). Adoption of precision livestock farming technologies has the potential to mitigate greenhouse gas emissions from beef production. Frontiers in Sustainable Food Systems, 8, 1414858. https://doi.org/10.3389/fsufs.2024.1414858
Ming, T., Richter, R. D., Dietrich Oeste, F., Tulip, R., & Caillol, S. (2021). A nature-based negative emissions technology able to remove atmospheric methane and other greenhouse gases. Atmospheric Pollution Research, 12(5), 101035. https://doi.org/10.1016/j.apr.2021.02.017
Qayyum, M., Zhang, Y., Wang, M., Yu, Y., Li, S., Ahmad, W., Maodaa, S. N., Sayed, S. R. M., & Gan, J. (2023). Advancements in technology and innovation for sustainable agriculture: Understanding and mitigating greenhouse gas emissions from agricultural soils. Journal of Environmental Management, 347, 119147. https://doi.org/10.1016/j.jenvman.2023.119147
Raman, J., Kim, J.-S., Choi, K. R., Eun, H., Yang, D., Ko, Y.-J., & Kim, S.-J. (2022). Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. International Journal of Molecular Sciences, 23(14), 7784. https://doi.org/10.3390/ijms23147784
Ramírez-Arias, A., Campos-Salazar, V., Pineda-Pineda, J., & Fitz-Rodríguez, E. (2020). Analysis of energy consumption for tomato production in low technology greenhouses of Mexico. Acta Horticulturae, 1296, 753–758. https://doi.org/10.17660/ActaHortic.2020.1296.95
Sharma, R., Kamble, S. S., Gunasekaran, A., Kumar, V., & Kumar, A. (2020). A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Computers & Operations Research, 119, 104926. https://doi.org/10.1016/j.cor.2020.104926
Singh, A., Dhiman, N., Kar, A. K., Singh, D., Purohit, M. P., Ghosh, D., & Patnaik, S. (2020). Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of Hazardous Materials, 385, 121525. https://doi.org/10.1016/j.jhazmat.2019.121525
Streimikis, J., & Baležentis, T. (2020). Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustainable Development, 28(6), 1702–1712. https://doi.org/10.1002/sd.2118
Tarolli, P., & Straffelini, E. (2020). Agriculture in Hilly and Mountainous Landscapes: Threats, Monitoring and Sustainable Management. Geography and Sustainability, 1(1), 70–76. https://doi.org/10.1016/j.geosus.2020.03.003
Tsai, W.-T., & Tsai, C.-H. (2023). A Survey on Fluorinated Greenhouse Gases in Taiwan: Emission Trends, Regulatory Strategies, and Abatement Technologies. Environments, 10(7), 113. https://doi.org/10.3390/environments10070113
Wang, C., Luo, D., Zhang, X., Huang, R., Cao, Y., Liu, G., Zhang, Y., & Wang, H. (2022). Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology, 10, 100167. https://doi.org/10.1016/j.ese.2022.100167
Wongchai, A., Shukla, S. K., Ahmed, M. A., Sakthi, U., Jagdish, M., & Kumar, R. (2022). Artificial intelligence—Enabled soft sensor and internet of things for sustainable agriculture using ensemble deep learning architecture. Computers and Electrical Engineering, 102, 108128. https://doi.org/10.1016/j.compeleceng.2022.108128
Xu, X., Sun, Y., Krishnamoorthy, S., & Chandran, K. (2020). An Empirical Analysis of Green Technology Innovation and Ecological Efficiency Based on a Greenhouse Evolutionary Ventilation Algorithm Fuzzy-Model. Sustainability, 12(9), 3886. https://doi.org/10.3390/su12093886
Yan, X., Ying, Y., Li, K., Zhang, Q., & Wang, K. (2024). A review of mitigation technologies and management strategies for greenhouse gas and air pollutant emissions in livestock production. Journal of Environmental Management, 352, 120028. https://doi.org/10.1016/j.jenvman.2024.120028
Authors
Copyright (c) 2025 Zhang Li, Yang Xiang, Liu Yang, Ardi Azhar Nampira

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.