Application of Internet of Things (IoT) in Modern Livestock Management in New Zealand
Abstract
This study examines the application of Internet of Things (IoT) technology in modern livestock management in New Zealand. The background of this research is based on the need to increase productivity, efficiency, and sustainability in the increasingly competitive livestock sector. The purpose of the study is to explore the benefits of applying IoT in livestock health monitoring, feed management, as well as the impact of this technology on the environment and sustainability. The research method used is descriptive-qualitative with data collection through interviews, field observations, and secondary data analysis. The results show that the adoption of IoT in large farms increases productivity by up to 20% and reduces operational costs through more efficient feed management. The study also found that infrastructure challenges are a hindrance to IoT adoption in small and medium-sized farms. The conclusion of the study is that IoT has the potential to be a key solution to improve efficiency and sustainability in the livestock sector, but infrastructure support and training are urgently needed to accelerate its adoption across sectors.
Full text article
References
Ahmad, M., Abbas, S., Fatima, A., Ghazal, T. M., Alharbi, M., Khan, M. A., & Elmitwally, N. S. (2023). AI-Driven livestock identification and insurance management system. Egyptian Informatics Journal, 24(3), 100390. https://doi.org/10.1016/j.eij.2023.100390
Alam, I., Sharif, K., Li, F., Latif, Z., Karim, M. M., Biswas, S., Nour, B., & Wang, Y. (2021). A Survey of Network Virtualization Techniques for Internet of Things Using SDN and NFV. ACM Computing Surveys, 53(2), 1–40. https://doi.org/10.1145/3379444
Andronie, M., L?z?roiu, G., Iatagan, M., U??, C., ?tef?nescu, R., & Coco?atu, M. (2021). Artificial Intelligence-Based Decision-Making Algorithms, Internet of Things Sensing Networks, and Deep Learning-Assisted Smart Process Management in Cyber-Physical Production Systems. Electronics, 10(20), 2497. https://doi.org/10.3390/electronics10202497
Aquino, D. S., Gavier?Pizarro, G. I., & Quintana, R. D. (2022). Water management infrastructure alters plant species composition, functional diversity and soil condition in a livestock?impaired mosaic of wetlands. Applied Vegetation Science, 25(4), e12698. https://doi.org/10.1111/avsc.12698
Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W., & Wahab, A. (2020). A Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions. Electronics, 9(7), 1177. https://doi.org/10.3390/electronics9071177
Asmare, B. (2022). A Review of Sensor Technologies Applicable for Domestic Livestock Production and Health Management. Advances in Agriculture, 2022, 1–6. https://doi.org/10.1155/2022/1599190
Augustine, D. J., Derner, J. D., Fernández-Giménez, M. E., Porensky, L. M., Wilmer, H., & Briske, D. D. (2020). Adaptive, Multipaddock Rotational Grazing Management: A Ranch-Scale Assessment of Effects on Vegetation and Livestock Performance in Semiarid Rangeland. Rangeland Ecology & Management, 73(6), 796–810. https://doi.org/10.1016/j.rama.2020.07.005
Boussios, D., Preckel, P. V., Yigezu, Y. A., Dixit, P., Rekik, M., Hilali, M. E. D., Wamatu, J., Haile, A., & Shakhatreh, Y. (2022). Agricultural resource and risk management with multiperiod stochastics: A case of the mixed crop-livestock production system in the drylands of Jordan. Frontiers in Environmental Science, 10, 986816. https://doi.org/10.3389/fenvs.2022.986816
Brown, V. R., Miller, R. S., Pepin, K. M., Carlisle, K. M., Cook, M. A., Vanicek, C. F., Holmstrom, L. K., Rochette, L. T., & Smyser, T. J. (2024). African swine fever at the wildlife-livestock interface: Challenges for management and outbreak response within invasive wild pigs in the United States. Frontiers in Veterinary Science, 11, 1348123. https://doi.org/10.3389/fvets.2024.1348123
Chen, Q., Srivastava, G., Parizi, R. M., Aloqaily, M., & Ridhawi, I. A. (2020). An incentive-aware blockchain-based solution for internet of fake media things. Information Processing & Management, 57(6), 102370. https://doi.org/10.1016/j.ipm.2020.102370
Cooper, B., & Okello, W. O. (2021). An economic lens to understanding antimicrobial resistance: Disruptive cases to livestock and wastewater management in Australia. Australian Journal of Agricultural and Resource Economics, 65(4), 900–917. https://doi.org/10.1111/1467-8489.12450
Costa, F., Genovesi, S., Borgese, M., Michel, A., Dicandia, F. A., & Manara, G. (2021). A Review of RFID Sensors, the New Frontier of Internet of Things. Sensors, 21(9), 3138. https://doi.org/10.3390/s21093138
Gaballah, M. S., Guo, J., Sun, H., Aboagye, D., Sobhi, M., Muhmood, A., & Dong, R. (2021). A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook. Bioresource Technology, 333, 125069. https://doi.org/10.1016/j.biortech.2021.125069
Gulati, K., Kumar Boddu, R. S., Kapila, D., Bangare, S. L., Chandnani, N., & Saravanan, G. (2022). A review paper on wireless sensor network techniques in Internet of Things (IoT). Materials Today: Proceedings, 51, 161–165. https://doi.org/10.1016/j.matpr.2021.05.067
Gupta, B. B., & Quamara, M. (2020). An overview of Internet of Things (IoT): Architectural aspects, challenges, and protocols. Concurrency and Computation: Practice and Experience, 32(21), e4946. https://doi.org/10.1002/cpe.4946
HaddadPajouh, H., Dehghantanha, A., M. Parizi, R., Aledhari, M., & Karimipour, H. (2021). A survey on internet of things security: Requirements, challenges, and solutions. Internet of Things, 14, 100129. https://doi.org/10.1016/j.iot.2019.100129
Hansen, E. B., & Bøgh, S. (2021). Artificial intelligence and internet of things in small and medium-sized enterprises: A survey. Journal of Manufacturing Systems, 58, 362–372. https://doi.org/10.1016/j.jmsy.2020.08.009
Hütt, C., Isselstein, J., Komainda, M., Schöttker, O., & Sturm, A. (2024). UAV LiDAR-based grassland biomass estimation for precision livestock management. Journal of Applied Remote Sensing, 18(01). https://doi.org/10.1117/1.JRS.18.017502
Islam, N., Rashid, M. M., Pasandideh, F., Ray, B., Moore, S., & Kadel, R. (2021). A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability, 13(4), 1821. https://doi.org/10.3390/su13041821
Jordon, M. W., Buffet, J.-C., Dungait, J. A. J., Galdos, M. V., Garnett, T., Lee, M. R. F., Lynch, J., Röös, E., Searchinger, T. D., Smith, P., & Godfray, H. C. J. (2024). A restatement of the natural science evidence base concerning grassland management, grazing livestock and soil carbon storage. Proceedings of the Royal Society B: Biological Sciences, 291(2015), 20232669. https://doi.org/10.1098/rspb.2023.2669
Kadam, R., Jo, S., Lee, J., Khanthong, K., Jang, H., & Park, J. (2024). A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management. Energies, 17(3), 546. https://doi.org/10.3390/en17030546
Kaswan, S., Chandratre, G. A., Upadhyay, D., Sharma, A., Sreekala, S. M., Badgujar, P. C., Panda, P., & Ruchay, A. (2024). Applications of sensors in livestock management. In Engineering Applications in Livestock Production (pp. 63–92). Elsevier. https://doi.org/10.1016/B978-0-323-98385-3.00004-9
Kayode Saheed, Y., Idris Abiodun, A., Misra, S., Kristiansen Holone, M., & Colomo-Palacios, R. (2022). A machine learning-based intrusion detection for detecting internet of things network attacks. Alexandria Engineering Journal, 61(12), 9395–9409. https://doi.org/10.1016/j.aej.2022.02.063
Koroniotis, N., Moustafa, N., & Sitnikova, E. (2020). A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework. Future Generation Computer Systems, 110, 91–106. https://doi.org/10.1016/j.future.2020.03.042
Majid, M., Habib, S., Javed, A. R., Rizwan, M., Srivastava, G., Gadekallu, T. R., & Lin, J. C.-W. (2022). Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors, 22(6), 2087. https://doi.org/10.3390/s22062087
Manickam, P., Mariappan, S. A., Murugesan, S. M., Hansda, S., Kaushik, A., Shinde, R., & Thipperudraswamy, S. P. (2022). Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors, 12(8), 562. https://doi.org/10.3390/bios12080562
Martín-Hernández, E., Martín, M., & Ruiz-Mercado, G. J. (2021). A geospatial environmental and techno-economic framework for sustainable phosphorus management at livestock facilities. Resources, Conservation and Recycling, 175, 105843. https://doi.org/10.1016/j.resconrec.2021.105843
Nyamuryekung’e, S. (2024). Transforming ranching: Precision livestock management in the Internet of Things era. Rangelands, 46(1), 13–22. https://doi.org/10.1016/j.rala.2023.10.002
Ratta, P., Kaur, A., Sharma, S., Shabaz, M., & Dhiman, G. (2021). Application of Blockchain and Internet of Things in Healthcare and Medical Sector: Applications, Challenges, and Future Perspectives. Journal of Food Quality, 2021, 1–20. https://doi.org/10.1155/2021/7608296
Rehman, A., Saba, T., Kashif, M., Fati, S. M., Bahaj, S. A., & Chaudhry, H. (2022). A Revisit of Internet of Things Technologies for Monitoring and Control Strategies in Smart Agriculture. Agronomy, 12(1), 127. https://doi.org/10.3390/agronomy12010127
Savaglio, C., Ganzha, M., Paprzycki, M., B?dic?, C., Ivanovi?, M., & Fortino, G. (2020). Agent-based Internet of Things: State-of-the-art and research challenges. Future Generation Computer Systems, 102, 1038–1053. https://doi.org/10.1016/j.future.2019.09.016
Schurch, M. P. E., McManus, J., Goets, S., Pardo, L. E., Gaynor, D., Samuels, I., Cupido, C., Couldridge, V., & Smuts, B. (2021). Wildlife-Friendly Livestock Management Promotes Mammalian Biodiversity Recovery on a Semi-Arid Karoo Farm in South Africa. Frontiers in Conservation Science, 2, 652415. https://doi.org/10.3389/fcosc.2021.652415
Serrano, J., Roma, L., Shahidian, S., Belo, A. D. F., Carreira, E., Paniagua, L. L., Moral, F., Paixão, L., & Marques Da Silva, J. (2022). A Technological Approach to Support Extensive Livestock Management in the Portuguese Montado Ecosystem. Agronomy, 12(5), 1212. https://doi.org/10.3390/agronomy12051212
Shamsoshoara, A., Korenda, A., Afghah, F., & Zeadally, S. (2020). A survey on physical unclonable function (PUF)-based security solutions for Internet of Things. Computer Networks, 183, 107593. https://doi.org/10.1016/j.comnet.2020.107593
Smith, K. V., DeLong, K. L., Boyer, C. N., Thompson, J. M., Lenhart, S. M., Strickland, W. C., Burgess, E. R., Tian, Y., Talley, J., Machtinger, E. T., & Trout Fryxell, R. T. (2022). A Call for the Development of a Sustainable Pest Management Program for the Economically Important Pest Flies of Livestock: A Beef Cattle Perspective. Journal of Integrated Pest Management, 13(1), 14. https://doi.org/10.1093/jipm/pmac010
Subeesh, A., & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 5, 278–291. https://doi.org/10.1016/j.aiia.2021.11.004
Swayamsiddha, S., & Mohanty, C. (2020). Application of cognitive Internet of Medical Things for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 911–915. https://doi.org/10.1016/j.dsx.2020.06.014
Wang, Y., Mücher, S., Wang, W., Guo, L., & Kooistra, L. (2023). A review of three-dimensional computer vision used in precision livestock farming for cattle growth management. Computers and Electronics in Agriculture, 206, 107687. https://doi.org/10.1016/j.compag.2023.107687
Yan, X., Ying, Y., Li, K., Zhang, Q., & Wang, K. (2024). A review of mitigation technologies and management strategies for greenhouse gas and air pollutant emissions in livestock production. Journal of Environmental Management, 352, 120028. https://doi.org/10.1016/j.jenvman.2024.120028
Authors
Copyright (c) 2025 Dina Destari, Raul Gomez, Bruna Costa, Ardi Azhar Nampira

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.