Blended Learning Models in the Post-Pandemic Era: Redefining Classroom Instruction and Online Learning Integration
Abstract
Background
The COVID-19 pandemic has catalyzed a significant shift in education, highlighting the need for flexible learning environments. As educational institutions transition to post-pandemic settings, blending traditional classroom instruction with online learning has become essential. Service learning, which combines community service with academic instruction, offers an innovative approach to enhance student engagement and learning. Integrating service learning into blended learning models can provide students with real-world experiences while developing both cognitive and social skills.
Objective
This study aims to explore how integrating service learning into blended learning models can redefine classroom instruction and online learning in the post-pandemic era. Specifically, it investigates the effectiveness of this integration in fostering student engagement, critical thinking, and civic responsibility.
Methodology
A mixed-methods approach was employed, involving a survey of 300 students and interviews with 20 instructors from five universities. Data were analyzed to assess changes in students' cognitive and social skills, as well as their perceptions of the integration of service learning with blended learning formats.
Results
The findings show that students in the integrated service learning and blended learning model demonstrated increased engagement, improved problem-solving skills, and greater awareness of social issues. Furthermore, instructors reported positive experiences in combining both instructional methods.
Conclusion
Integrating service learning with blended learning models significantly enhances student engagement and learning outcomes in higher education. This approach is particularly valuable in the post-pandemic era, where flexible, hybrid learning environments are essential.
Full text article
References
Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., Van Dijk, A. A., Ebrecht, A. C., … Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871–876. https://doi.org/10.1126/science.abj8754
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
Chung, E., Subramaniam, G., & Christ Dass, L. (2020). Online Learning Readiness Among University Students in Malaysia Amidst Covid-19. Asian Journal of University Education, 16(2), 45. https://doi.org/10.24191/ajue.v16i2.10294
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144. https://doi.org/10.1145/3422622
Hoi, S. C. H., Sahoo, D., Lu, J., & Zhao, P. (2021). Online learning: A comprehensive survey. Neurocomputing, 459, 249–289. https://doi.org/10.1016/j.neucom.2021.04.112
Jin, S., Guerrero-Juarez, C. F., Zhang, L., Chang, I., Ramos, R., Kuan, C.-H., Myung, P., Plikus, M. V., & Nie, Q. (2021). Inference and analysis of cell-cell communication using CellChat. Nature Communications, 12(1), 1088. https://doi.org/10.1038/s41467-021-21246-9
Kabzan, J., Hewing, L., Liniger, A., & Zeilinger, M. N. (2019). Learning-Based Model Predictive Control for Autonomous Racing. IEEE Robotics and Automation Letters, 4(4), 3363–3370. https://doi.org/10.1109/LRA.2019.2926677
Kaliyar, R. K., Goswami, A., Narang, P., & Sinha, S. (2020). FNDNet – A deep convolutional neural network for fake news detection. Cognitive Systems Research, 61, 32–44. https://doi.org/10.1016/j.cogsys.2019.12.005
Kawahara, J., Daneshvar, S., Argenziano, G., & Hamarneh, G. (2019). Seven-Point Checklist and Skin Lesion Classification Using Multitask Multimodal Neural Nets. IEEE Journal of Biomedical and Health Informatics, 23(2), 538–546. https://doi.org/10.1109/JBHI.2018.2824327
Kim, J. (2020). Learning and Teaching Online During Covid-19: Experiences of Student Teachers in an Early Childhood Education Practicum. International Journal of Early Childhood, 52(2), 145–158. https://doi.org/10.1007/s13158-020-00272-6
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234–1240. https://doi.org/10.1093/bioinformatics/btz682
Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9
Nadini, M., Alessandretti, L., Di Giacinto, F., Martino, M., Aiello, L. M., & Baronchelli, A. (2021). Mapping the NFT revolution: Market trends, trade networks, and visual features. Scientific Reports, 11(1), 20902. https://doi.org/10.1038/s41598-021-00053-8
Ouyang, X., Huo, J., Xia, L., Shan, F., Liu, J., Mo, Z., Yan, F., Ding, Z., Yang, Q., Song, B., Shi, F., Yuan, H., Wei, Y., Cao, X., Gao, Y., Wu, D., Wang, Q., & Shen, D. (2020). Dual-Sampling Attention Network for Diagnosis of COVID-19 From Community Acquired Pneumonia. IEEE Transactions on Medical Imaging, 39(8), 2595–2605. https://doi.org/10.1109/TMI.2020.2995508
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195–204. https://doi.org/10.1038/s41586-019-0912-1
Saadatnejad, S., Oveisi, M., & Hashemi, M. (2020). LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices. IEEE Journal of Biomedical and Health Informatics, 24(2), 515–523. https://doi.org/10.1109/JBHI.2019.2911367
Sahoo, S. R., & Gupta, B. B. (2021). Multiple features based approach for automatic fake news detection on social networks using deep learning. Applied Soft Computing, 100, 106983. https://doi.org/10.1016/j.asoc.2020.106983
Santomauro, D. F., Mantilla Herrera, A. M., Shadid, J., Zheng, P., Ashbaugh, C., Pigott, D. M., Abbafati, C., Adolph, C., Amlag, J. O., Aravkin, A. Y., Bang-Jensen, B. L., Bertolacci, G. J., Bloom, S. S., Castellano, R., Castro, E., Chakrabarti, S., Chattopadhyay, J., Cogen, R. M., Collins, J. K., … Ferrari, A. J. (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. The Lancet, 398(10312), 1700–1712. https://doi.org/10.1016/S0140-6736(21)02143-7
Scherer, R., Howard, S. K., Tondeur, J., & Siddiq, F. (2021). Profiling teachers’ readiness for online teaching and learning in higher education: Who’s ready? Computers in Human Behavior, 118, 106675. https://doi.org/10.1016/j.chb.2020.106675
Schwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S., & Rus, D. (2019). Social behavior for autonomous vehicles. Proceedings of the National Academy of Sciences, 116(50), 24972–24978. https://doi.org/10.1073/pnas.1820676116
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision, 128(2), 336–359. https://doi.org/10.1007/s11263-019-01228-7
Shen, S., Sadoughi, M., Chen, X., Hong, M., & Hu, C. (2019). A deep learning method for online capacity estimation of lithium-ion batteries. Journal of Energy Storage, 25, 100817. https://doi.org/10.1016/j.est.2019.100817
Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0
Tang, Y. M., Chen, P. C., Law, K. M. Y., Wu, C. H., Lau, Y., Guan, J., He, D., & Ho, G. T. S. (2021). Comparative analysis of Student’s live online learning readiness during the coronavirus (COVID-19) pandemic in the higher education sector. Computers & Education, 168, 104211. https://doi.org/10.1016/j.compedu.2021.104211
Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., In ’T Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171
Timoshenko, A., & Hauser, J. R. (2019). Identifying Customer Needs from User-Generated Content. Marketing Science, 38(1), 1–20. https://doi.org/10.1287/mksc.2018.1123
Wang, C., Wang, J., Shen, Y., & Zhang, X. (2019). Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 68(3), 2124–2136. https://doi.org/10.1109/TVT.2018.2890773
Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., & Shen, X. (2021). Delay-Aware Microservice Coordination in Mobile Edge Computing: A Reinforcement Learning Approach. IEEE Transactions on Mobile Computing, 20(3), 939–951. https://doi.org/10.1109/TMC.2019.2957804
Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., & Solomon, J. M. (2019). Dynamic Graph CNN for Learning on Point Clouds. ACM Transactions on Graphics, 38(5), 1–12. https://doi.org/10.1145/3326362
Wei, H.-C., & Chou, C. (2020). Online learning performance and satisfaction: Do perceptions and readiness matter? Distance Education, 41(1), 48–69. https://doi.org/10.1080/01587919.2020.1724768
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2021). A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1), 4–24. https://doi.org/10.1109/TNNLS.2020.2978386
Yang, K., Varol, O., Davis, C. A., Ferrara, E., Flammini, A., & Menczer, F. (2019). Arming the public with artificial intelligence to counter social bots. Human Behavior and Emerging Technologies, 1(1), 48–61. https://doi.org/10.1002/hbe2.115
Authors
Copyright (c) 2024 Suryaningsih Suryaningsih, Yassine Belhassen

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.