Robotic Arm Control System Design for High Precision Work
Abstract
The demand for high-precision tasks in various industries, such as manufacturing and healthcare, necessitates the development of advanced robotic systems. Traditional robotic arms often struggle to meet the accuracy and repeatability required for precision work. This research focuses on designing a control system specifically tailored for robotic arms to enhance their performance in high-precision applications. The primary goal of this study is to develop an advanced control system for robotic arms that improves accuracy and reliability during precision tasks. The research aims to evaluate the effectiveness of various control algorithms in optimizing the performance of the robotic arm. A systematic approach was employed, utilizing simulation software to design and test different control strategies, including PID control and adaptive control methods. Performance metrics such as positional accuracy, response time, and stability were analyzed through a series of experiments conducted in both simulated and real-world environments. The implementation of the advanced control system resulted in significant improvements in the robotic arm's performance. The adaptive control method achieved a positional accuracy of 0.1 mm, with a response time reduction of 30% compared to traditional PID control. These findings demonstrate the effectiveness of the proposed control strategies in enhancing precision. The research successfully developed a robust control system for robotic arms, significantly improving their ability to perform high-precision tasks.
Full text article
References
Abad, J. C. Z., & Alemán, M. A. C. (2024). Intelligent tuning of PID controllers: Comprehensive approach based on modified Particle Swarm Optimization (PSO) algorithm. IECON Proc. IECON Proceedings (Industrial Electronics Conference). Scopus. https://doi.org/10.1109/IECON55916.2024.10905779
Andreeva, T. A., Bykov, N. Y., Kompan, T. A., Kulagin, V. I., Lukin, A. Y., & Vlasova, V. V. (2023). Precision Calorimeter Model Development: Generative Design Approach. Processes, 11(1). Scopus. https://doi.org/10.3390/pr11010152
Chen, Z., Zhou, S., Shen, C., Lyu, L., Zhang, J., & Yao, B. (2024). Observer-Based Adaptive Robust Precision Motion Control of a Multi-Joint Hydraulic Manipulator. IEEE/CAA Journal of Automatica Sinica, 11(5), 1213–1226. Scopus. https://doi.org/10.1109/JAS.2024.124209
Da Fonseca, J. E. D. N., Valente, L. C. L., & De Oliveira Evald, P. J. D. (2024). Optimizing PID Controllers of Drone-based Wind Turbine Inspection Systems using the African Vulture Algorithm. Semin. Power Electron. Control, SEPOC. 2024 16th Seminar on Power Electronics and Control, SEPOC 2024. Scopus. https://doi.org/10.1109/SEPOC63090.2024.10747459
Ding, M., Meng, S., Wang, S., & Xia, X. (2022). Neural-Network-Based Adaptive Feedback Linearization Control for 6-DOF Wave Compensation Platform. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 56(2), 165–172. Scopus. https://doi.org/10.16183/j.cnki.jsjtu.2020.424
George, T., & Ganesan, V. (2022). Optimal tuning of PID controller in time delay system: A review on various optimization techniques. Chemical Product and Process Modeling, 17(1), 1–28. Scopus. https://doi.org/10.1515/cppm-2020-2001
Hu, P., Zhang, L., Yang, H., & Yang, Y. (2024). Model predictive-based compliance control for knee arthroplasty surgical robots. Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 46(9), 1638–1646. Scopus. https://doi.org/10.13374/j.issn2095-9389.2023.12.27.001
Hugar, V., Matt, P., Chandrashekar, C., & Keshav, M. (2024). Modeling and Simulation of Helicopter Swashplate Collective Control Response in UAV Applications. IEEE Int. Conf. Comput. Syst. Inf. Technol. Sustain. Solut., CSITSS. 8th IEEE International Conference on Computational System and Information Technology for Sustainable Solutions, CSITSS 2024. Scopus. https://doi.org/10.1109/CSITSS64042.2024.10817063
Hussien, A. M., Fathollahi Dehkordi, S., & Naeimifard, A. (2025). Sloshing Suppression in Liquid Transport Systems Using Fuzzy Logic Control Algorithm. Arabian Journal for Science and Engineering. Scopus. https://doi.org/10.1007/s13369-025-09993-z
Irawan, A., Ramli, M. S., Sulaiman, M. H., Azahar, M. I. P., & Adom, A. H. (2023). Optimal Pneumatic Actuator Positioning and Dynamic Stability using Prescribed Performance Control with Particle Swarm Optimization: A Simulation Study. International Journal of Robotics and Control Systems, 3(3), 364–379. Scopus. https://doi.org/10.31763/ijrcs.v3i3.1002
Jabeur, C. B., & Seddik, H. (2022). Neural networks on-line optimized PID controller with wind gust rejection for a quad-rotor. International Review of Applied Sciences and Engineering, 13(2), 133–147. Scopus. https://doi.org/10.1556/1848.2021.00325
Jabeur, C. B., & Seddik, H. (2024). PID Fuzzy and Neural Fuzzy Depth Controllers for an underwater robot: The UROV. IEEE Int. Conf. Adv. Technol., Signal Image Process., ATSIP, 44–49. Scopus. https://doi.org/10.1109/ATSIP62566.2024.10639006
Ke, J.-D., Chiu, Y.-J., Hsu, H.-C., Tsai, J.-C., & Wang, Y.-J. (2025). Tri-Axis force sensing and Controlling for a horizontally distributed 3-PUU parallel mechanism. Measurement: Journal of the International Measurement Confederation, 249. Scopus. https://doi.org/10.1016/j.measurement.2025.117017
Khalifa, M. A., Mekid, S. N., & Khan, Z. H. (2024). Position and Torque Joint Control for Precision Drilling in Robotic Manufacturing Applications. ASU Int. Conf. Emerg. Technol. Sustain. Intell. Syst., ICETSIS, 888–893. Scopus. https://doi.org/10.1109/ICETSIS61505.2024.10459489
Lei, X., & Wu, Y. (2022). Vibration and Trajectory Tracking Control of Engineering Mechanical Arm Based on Neural Network. Computational Intelligence and Neuroscience, 2022. Scopus. https://doi.org/10.1155/2022/4461546
Li, N., Huang, Z., & Shi, Y. (2024). Trajectory tracking control of underwater tracked vehicle considering ICR longitudinal deviation compensation. Transactions of the Institute of Measurement and Control. Scopus. https://doi.org/10.1177/01423312241279487
Liang, X., Wang, Y., Yu, H., Zhang, Z., Han, J., & Fang, Y. (2025). Observer-Based Nonlinear Control for Dual-Arm Aerial Manipulator Systems Suffering from Uncertain Center of Mass. IEEE Transactions on Automation Science and Engineering, 22, 1984–1995. Scopus. https://doi.org/10.1109/TASE.2024.3373107
Liem, D. T. (2023). Trajectory control of a hydraulic system using intelligent control approach based on adaptive prediction model. IFAC Journal of Systems and Control, 26. Scopus. https://doi.org/10.1016/j.ifacsc.2023.100228
Lu, J., Liu, Y., Huang, W., Bi, K., Zhu, Y., & Fan, Q. (2022). Robust Control Strategy of Gradient Magnetic Drive for Microrobots Based on Extended State Observer. Cyborg and Bionic Systems, 2022. Scopus. https://doi.org/10.34133/2022/9835014
Pelleti, S., Kumar, J. R. R., Krushnasamy, V. S., & Raj, G. B. M. (2024). Intelligent Control Systems for Industrial Automation and Robotics. Proc. Int. Conf. Sci., Technol., Eng. Math.: Role Emerg. Technol. Digit. Transform., ICONSTEM. Proceedings of 9th International Conference on Science, Technology, Engineering and Mathematics: The Role of Emerging Technologies in Digital Transformation, ICONSTEM 2024. Scopus. https://doi.org/10.1109/ICONSTEM60960.2024.10568781
Prasad, S. J. S., Thangatamilan, M., Sureshkumar, R., Charumithra, I., Jagadeshwaran, S., & Ahamed, M. A. (2023). LoRa based Real Time Level Control System for Non-Linear Spherical Tank System. Proc. - Int. Conf. Pervasive Comput. Soc. Netw., ICPCSN, 1024–1028. Scopus. https://doi.org/10.1109/ICPCSN58827.2023.00174
Shi, Y., Cheng, X., Xi, X., Shan, X., Jin, Y., & Zhang, R. (2023). Research progress on the path tracking control methods for agricultural machinery navigation. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 39(15), 1–14. Scopus. https://doi.org/10.11975/j.issn.1002-6819.202304004
Tan, G. H., Lai, C. H., & Hoo, C. L. (2024). New Anti-Windup Control, SIPIC to Improve the Quadcopter Dynamical Performance. IEEE Control Syst. Grad. Res. Colloq., ICSGRC - Conf. Proceeding, 1–6. Scopus. https://doi.org/10.1109/ICSGRC62081.2024.10691096
Uralde, J., Artetxe, E., Barambones, O., Calvo, I., Fernández-Bustamante, P., & Martin, I. (2023). Ultraprecise Controller for Piezoelectric Actuators Based on Deep Learning and Model Predictive Control. Sensors, 23(3). Scopus. https://doi.org/10.3390/s23031690
Urrea, C., Domínguez, C., & Kern, J. (2024). Modeling, design and control of a 4-arm delta parallel manipulator employing type-1 and interval type-2 fuzzy logic-based techniques for precision applications. Robotics and Autonomous Systems, 175. Scopus. https://doi.org/10.1016/j.robot.2024.104661
Vysotska, V., Lytvyn, V., Vladov, S., Vasylenko, V., & Kryshan, O. (2024). The optimal controller parametric synthesis using variational calculus for a dynamic system general mathematical model. Dalam Lytvynenko I. & Lupenko S. (Ed.), CEUR Workshop Proc. (Vol. 3896, hlm. 217–234). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85216245245&partnerID=40&md5=77a571046a93f2dc39af162190d94b04
Wang, Q., Xiang, Z., Liu, J., Zhang, D., & Wu, S. (2024). Path Tracking Method of Forklift AGV Based on Fuzzy Adaptive PID. Proc. - Int. Conf. Ind. Autom., Robot. Control Eng., IARCE, 127–132. Scopus. https://doi.org/10.1109/IARCE64300.2024.00032
Wang, Y., Yu, T., Wang, Z., & Liu, Y. (2023). Photo-Electro-Thermal Model and Fuzzy Adaptive PID Control for UV LEDs in Charge Management. Sensors, 23(13). Scopus. https://doi.org/10.3390/s23135946
Yao, C., Liu, X., Wang, J., & Cheng, Y. (2024). Optimized Design of EdgeBoard Intelligent Vehicle Based on PP-YOLOE+. Sensors, 24(10). Scopus. https://doi.org/10.3390/s24103180
Yousef, H., Siddique, T., Fareh, R., Choutri, K., Dylov, D., & Khadraoui, S. (2024). Reinforcement Learning-tuned Active Disturbance Rejection Controller for Tracking Control of a 4-DoF Robot Manipulator. Int. Conf. Control, Mechatronics Autom., ICCMA, 125–130. Scopus. https://doi.org/10.1109/ICCMA63715.2024.10843945
Zhao, J., Huang, C., Ding, P., & Zhang, Q. (2024). Tension Control System for Cable-laying Based on a Fuzzy Adaptive PID. Journal of Multiple-Valued Logic and Soft Computing, 42, 223–240. Scopus.
Zhmud, V. A. (2024). Increasing Dynamic Control Accuracy by Increasing the Order of Integration. Dalam Chen C.-H., Wu J., Scapellato A., Berinde V., Korzun D.G., & Zou J. (Ed.), Adv. Transdiscipl. Eng. (Vol. 61, hlm. 597–605). IOS Press BV; Scopus. https://doi.org/10.3233/ATDE240811
ZHONG, J., WANG, C., & ZHANG, H. (2023). Transition control of a tail-sitter unmanned aerial vehicle with L1 neural network adaptive control. Chinese Journal of Aeronautics, 36(7), 460–475. Scopus. https://doi.org/10.1016/j.cja.2023.04.002
Authors
Copyright (c) 2025 Enda Wista Sinuraya, Bambang Winardi, Zain Nizam

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.