Parallel Processing System Optimization in High-Performance Computing for Fluid Simulation
Abstract
The growing complexity of fluid simulations in computational science necessitates the use of high-performance computing (HPC) systems. Efficient processing is critical for handling large datasets and complex algorithms, particularly in fields such as aerospace, meteorology, and biomedical engineering. Existing parallel processing methods often face limitations in scalability and resource utilization. This research aims to optimize parallel processing systems for high-performance computing applications in fluid simulations. The study focuses on enhancing computational efficiency and reducing execution time while maintaining accuracy in simulations. A multi-faceted approach was employed, combining algorithmic improvements with architectural enhancements. The research involved implementing advanced parallelization techniques, such as domain decomposition and load balancing, on a cluster of HPC nodes. Performance metrics were collected to evaluate the impact of these optimizations on simulation speed and resource utilization. The optimized system demonstrated a significant reduction in execution time, achieving up to a 60% improvement compared to baseline performance. Enhanced load balancing techniques resulted in more efficient resource distribution, leading to improved overall system performance. Accuracy of the fluid simulations remained consistent with previous results, validating the effectiveness of the optimizations. The study concludes that optimizing parallel processing systems significantly enhances the efficiency of fluid simulations in HPC environments. The findings provide valuable insights for researchers and practitioners seeking to improve computational performance in complex simulations. Future work should explore further optimizations and the integration of emerging technologies to continue advancing the capabilities of fluid simulation in high-performance computing
Full text article
References
Africa, P. C., Fumagalli, I., Bucelli, M., Zingaro, A., Fedele, M., Dede’, L., & Quarteroni, A. (2024). lifex-cfd: An open-source computational fluid dynamics solver for cardiovascular applications. Computer Physics Communications, 296, 109039. https://doi.org/10.1016/j.cpc.2023.109039
Alobaid, F., Almohammed, N., Massoudi Farid, M., May, J., Rößger, P., Richter, A., & Epple, B. (2022). Progress in CFD Simulations of Fluidized Beds for Chemical and Energy Process Engineering. Progress in Energy and Combustion Science, 91, 100930. https://doi.org/10.1016/j.pecs.2021.100930
Bäumler, K., Vedula, V., Sailer, A. M., Seo, J., Chiu, P., Mistelbauer, G., Chan, F. P., Fischbein, M. P., Marsden, A. L., & Fleischmann, D. (2020). Fluid–structure interaction simulations of patient-specific aortic dissection. Biomechanics and Modeling in Mechanobiology, 19(5), 1607–1628. https://doi.org/10.1007/s10237-020-01294-8
Bayat, M., Dong, W., Thorborg, J., To, A. C., & Hattel, J. H. (2021). A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies. Additive Manufacturing, 47, 102278. https://doi.org/10.1016/j.addma.2021.102278
Chen, Y., Li, W., Fan, R., & Liu, X. (2022). GPU Optimization for High-Quality Kinetic Fluid Simulation. IEEE Transactions on Visualization and Computer Graphics, 28(9), 3235–3251. https://doi.org/10.1109/TVCG.2021.3059753
Domínguez, J. M., Fourtakas, G., Altomare, C., Canelas, R. B., Tafuni, A., García-Feal, O., Martínez-Estévez, I., Mokos, A., Vacondio, R., Crespo, A. J. C., Rogers, B. D., Stansby, P. K., & Gómez-Gesteira, M. (2022). DualSPHysics: From fluid dynamics to multiphysics problems. Computational Particle Mechanics, 9(5), 867–895. https://doi.org/10.1007/s40571-021-00404-2
Du, X., & Thakur, G. C. (2024). Lessons Learned from the Process of Water Injection Management in Impactful Onshore and Offshore Carbonate Reservoirs. Energies, 17(16), 3951. https://doi.org/10.3390/en17163951
Espinel, E., Rojas, J. P., & Florez Solano, E. (2021). Computational Fluid Dynamics Study of NACA 0012 Airfoil Performance with OpenFOAM®. International Review of Aerospace Engineering (IREASE), 14(4), 201. https://doi.org/10.15866/irease.v14i4.19348
Ju, Y., Perez, A., Markidis, S., Schlatter, P., & Laure, E. (2022). Understanding the Impact of Synchronous, Asynchronous, and Hybrid In-Situ Techniques in Computational Fluid Dynamics Applications. 2022 IEEE 18th International Conference on E-Science (e-Science), 295–305. https://doi.org/10.1109/eScience55777.2022.00043
Kaiser, S., Haq, Md. S., Tosun, A. S., & Korkmaz, T. (2022). Container Technologies for ARM Architecture: A Comprehensive Survey of the State-of-the-Art. IEEE Access, 10, 84853–84881. https://doi.org/10.1109/ACCESS.2022.3197151
Kampitsis, A., Kapasakalis, K., & Via-Estrem, L. (2022). An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems. Engineering Structures, 254, 113859. https://doi.org/10.1016/j.engstruct.2022.113859
Kataraki, K. V., & Chickerur, S. (2020). A Performance Study of Moving Particle Semi-Implicit Method for Incompressible Fluid Flow on GPU: International Journal of Distributed Systems and Technologies, 11(1), 83–94. https://doi.org/10.4018/IJDST.2020010107
Kazemi-Varnamkhasti, H., Khazaee, I., Ameri, M., & Toghraie, D. (2023). Heat storage and increasing the rate of heat transfer in polymer electrolyte membrane fuel cell by adding nano-encapsulated phase change material to water in the cooling process. Journal of Energy Storage, 59, 106497. https://doi.org/10.1016/j.est.2022.106497
Kiani-Oshtorjani, M., Ustinov, S., Handroos, H., Jalali, P., & Mikkola, A. (2020). Real-Time Simulation of Fluid Power Systems Containing Small Oil Volumes, Using the Method of Multiple Scales. IEEE Access, 8, 196940–196950. https://doi.org/10.1109/ACCESS.2020.3034698
Kocot, B., Czarnul, P., & Proficz, J. (2023). Energy-Aware Scheduling for High-Performance Computing Systems: A Survey. Energies, 16(2), 890. https://doi.org/10.3390/en16020890
Lange, C., Barthelmäs, P., Rosnitschek, T., Tremmel, S., & Rieg, F. (2021). Impact of HPC and Automated CFD Simulation Processes on Virtual Product Development—A Case Study. Applied Sciences, 11(14), 6552. https://doi.org/10.3390/app11146552
Leandro Nesi, L., Da Silva Serpa, M., Mello Schnorr, L., & Navaux, P. O. A. (2020). Task?based parallel strategies for computational fluid dynamic application in heterogeneous CPU/GPU resources. Concurrency and Computation: Practice and Experience, 32(20), e5772. https://doi.org/10.1002/cpe.5772
Li, H., Ju, Y., & Zhang, C. (2022). Optimization of supercritical carbon dioxide recompression Brayton cycle considering anti-condensation design of centrifugal compressor. Energy Conversion and Management, 254, 115207. https://doi.org/10.1016/j.enconman.2022.115207
Li, J., Zhang, X., Zhou, J., Dong, X., Zhang, C., & Ji, Z. (2019). swHPFM: Refactoring and Optimizing the Structured Grid Fluid Mechanical Algorithm on the Sunway TaihuLight Supercomputer. Applied Sciences, 10(1), 72. https://doi.org/10.3390/app10010072
Li, W., Yu, G., & Yu, Z. (2020). Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles. Applied Thermal Engineering, 179, 115686. https://doi.org/10.1016/j.applthermaleng.2020.115686
Linner, T., Hu, R., Iturralde, K., & Bock, T. (2022). A Procedure Model for the Development of Construction Robots. In S. H. Ghaffar, P. Mullett, E. Pei, & J. Roberts (Eds.), Innovation in Construction (pp. 321–352). Springer International Publishing. https://doi.org/10.1007/978-3-030-95798-8_14
Longest, W., Hassan, A., Farkas, D., & Hindle, M. (2022). Computational Fluid Dynamics (CFD) Guided Spray Drying Recommendations for Improved Aerosol Performance of a Small-Particle Antibiotic Formulation. Pharmaceutical Research, 39(2), 295–316. https://doi.org/10.1007/s11095-022-03180-7
McManus, L., Goldin, G., Zhang, Y., Veljkovic, I., Sadasivuni, S., & Liu, K. (2024). GPU Accelerated LES-FGM Modelling for Industrial Combustion Applications. Volume 3A: Combustion, Fuels, and Emissions, V03AT04A009. https://doi.org/10.1115/GT2024-122041
Mira, D., Pérez-Sánchez, E. J., Borrell, R., & Houzeaux, G. (2023). HPC-enabling technologies for high-fidelity combustion simulations. Proceedings of the Combustion Institute, 39(4), 5091–5125. https://doi.org/10.1016/j.proci.2022.07.222
Neau, H., Ansart, R., Baudry, C., Fournier, Y., Mérigoux, N., Koren, C., Laviéville, J., Renon, N., & Simonin, O. (2024). HPC challenges and opportunities of industrial-scale reactive fluidized bed simulation using meshes of several billion cells on the route of Exascale. Powder Technology, 444, 120018. https://doi.org/10.1016/j.powtec.2024.120018
Oh, J.-S., Kopas, C. J., Marshall, J., Fang, X., Joshi, K. R., Datta, A., Ghimire, S., Park, J.-M., Kim, R., Setiawan, D., Lachman, E., Mutus, J. Y., Murthy, A. A., Grassellino, A., Romanenko, A., Zasadzinski, J., Wang, J., Prozorov, R., Yadavalli, K., … Zhou, L. (2024). Exploring the relationship between deposition method, microstructure, and performance of Nb/Si-based superconducting coplanar waveguide resonators. Acta Materialia, 276, 120153. https://doi.org/10.1016/j.actamat.2024.120153
Oh, U., Nonaka, N., & Ishimoto, J. (2022). Valve Optimization with System-fluid-magnetic Co-simulation and Design of Experiments. International Journal of Automotive Technology, 23(3), 683–692. https://doi.org/10.1007/s12239-022-0062-6
Patel, M., Pandya, J., & Patel, V. (2022). Numerical ?a?nalysis of ?f?luid ?f?low ?b?ehaviour in ?t?wo ?s?ided ?d?eep ?l?id? ?d?riven ?c?avity using the ?f?inite ?v?olume ?t?echnique. Computational Methods for Differential Equations, Online First. https://doi.org/10.22034/cmde.2022.49864.2074
Prasanna, M. M., & Jayanti, S. (2023). Fluid engineering issues in the design of industrial-scale flow batteries. Proceeding of 8th Thermal and Fluids Engineering Conference (TFEC), 747–755. https://doi.org/10.1615/TFEC2023.eet.045828
Ravikumar, A., Sriraman, H., Saleena, B., & Prakash, B. (2023). Selecting the optimal transfer learning model for precise breast cancer diagnosis utilizing pre-trained deep learning models and histopathology images. Health and Technology, 13(5), 721–745. https://doi.org/10.1007/s12553-023-00772-0
Río-Martín, L., Busto, S., & Dumbser, M. (2021). A Massively Parallel Hybrid Finite Volume/Finite Element Scheme for Computational Fluid Dynamics. Mathematics, 9(18), 2316. https://doi.org/10.3390/math9182316
Salari, A., Kazemian, A., Ma, T., Hakkaki-Fard, A., & Peng, J. (2020). Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis. Energy Conversion and Management, 205, 112384. https://doi.org/10.1016/j.enconman.2019.112384
Salmon, F., & Chatellier, L. (2022). 3D fluid–structure interaction simulation of an hydrofoil at low Reynolds number. Journal of Fluids and Structures, 111, 103573. https://doi.org/10.1016/j.jfluidstructs.2022.103573
Sandberg, R. D., & Michelassi, V. (2022). Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models. Annual Review of Fluid Mechanics, 54(1), 255–285. https://doi.org/10.1146/annurev-fluid-031221-105530
Shad, R., Kong, S., Fong, R., Quach, N., Kasinpila, P., Bowles, C., Lee, A., & Hiesinger, W. (2022). Computational Fluid Dynamics Simulations to Predict False Lumen Enlargement After Surgical Repair of Type-A Aortic Dissection. Seminars in Thoracic and Cardiovascular Surgery, 34(2), 443–448. https://doi.org/10.1053/j.semtcvs.2021.05.012
Shen, Y., Mazhar, A. R., Zhang, P., & Liu, S. (2022). Investigation of the volume impact on cascaded latent heat storage system by coupling genetic algorithm and CFD simulation. Journal of Energy Storage, 48, 104065. https://doi.org/10.1016/j.est.2022.104065
Shukla, V., Tyagi, D., Gera, B., Varma, S., Ganju, S., & Maheshwari, N. K. (2021). Development and validation of CFD model for catalytic recombiner against experimental results. Chemical Engineering Journal, 407, 127216. https://doi.org/10.1016/j.cej.2020.127216
Zhang, F., Lin, A., Wang, P., & Liu, P. (2021). Optimization design of a parallel air-cooled battery thermal management system with spoilers. Applied Thermal Engineering, 182, 116062. https://doi.org/10.1016/j.applthermaleng.2020.116062
Zhang, F., Wang, T., Liu, F., Peng, M., Furtney, J., & Zhang, L. (2020). Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: Implications to suffusion in gap-graded soils. Computers and Geotechnics, 124, 103617. https://doi.org/10.1016/j.compgeo.2020.103617
Zhang, H., Guo, X.-W., Li, C., Liu, Q., Xu, H., & Liu, J. (2022). Accelerating FVM-Based Parallel Fluid Simulations with Better Grid Renumbering Methods. Applied Sciences, 12(15), 7603. https://doi.org/10.3390/app12157603
Authors
Copyright (c) 2024 Sota Yamamoto, kaito Tanaka, Arnes Yuli Vandika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.