The Role of Wildlife Corridors in Maintaining Biodiversity and Ecosystem Services
Abstract
Wildlife corridors are critical for maintaining biodiversity and ecosystem services, especially in fragmented landscapes. These corridors facilitate species movement, promote genetic diversity, and enhance ecosystem resilience. Understanding their role is essential for effective conservation strategies in the face of habitat loss and climate change. This research aims to assess the effectiveness of wildlife corridors in supporting biodiversity and providing essential ecosystem services. The study seeks to identify key factors influencing the success of these corridors and their impact on wildlife populations and ecosystem health. A mixed-methods approach was employed, combining quantitative data from ecological surveys with qualitative insights from stakeholder interviews. Field studies were conducted in various ecosystems with established wildlife corridors, focusing on species movement patterns, population dynamics, and ecosystem service assessments. Findings indicate that wildlife corridors significantly enhance biodiversity by facilitating species dispersal and reducing isolation. The study revealed increased species richness and improved ecosystem services, such as pollination and seed dispersal, in areas connected by corridors. Stakeholder feedback highlighted the importance of community involvement in corridor management. This study concludes that wildlife corridors play a vital role in maintaining biodiversity and enhancing ecosystem services. Effective management and community engagement are essential for the success of these corridors. Policymakers and conservationists must prioritize the establishment and maintenance of wildlife corridors to mitigate the impacts of habitat fragmentation and support ecological health.
Full text article
References
A. Odilov, B., Madraimov, A., Y. Yusupov, O., R. Karimov, N., Alimova, R., Z. Yakhshieva, Z., & A Akhunov, S. (2024). Utilizing Deep Learning and the Internet of Things to Monitor the Health of Aquatic Ecosystems to Conserve Biodiversity. Natural and Engineering Sciences, 9(1), 72–83. https://doi.org/10.28978/nesciences.1491795
Alcocer, I., Lima, H., Sugai, L. S. M., & Llusia, D. (2022). Acoustic indices as proxies for biodiversity: A meta?analysis. Biological Reviews, 97(6), 2209–2236. https://doi.org/10.1111/brv.12890
Atwoli, L., Baqui, A. H., Benfield, T., Bosurgi, R., Godlee, F., Hancocks, S., Horton, R., Laybourn-Langton, L., Monteiro, C. A., Norman, I., Patrick, K., Praities, N., Olde Rikkert, M. G. M., Rubin, E. J., Sahni, P., Smith, R., Talley, N. J., Turale, S., & Vázquez, D. (2021). Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. BMJ, n1734. https://doi.org/10.1136/bmj.n1734
Buotte, P. C., Law, B. E., Ripple, W. J., & Berner, L. T. (2020). Carbon sequestration and biodiversity co?benefits of preserving forests in the western UNITED STATES. Ecological Applications, 30(2), e02039. https://doi.org/10.1002/eap.2039
Burns, F., Eaton, M. A., Burfield, I. J., Klva?ová, A., Šilarová, E., Staneva, A., & Gregory, R. D. (2021). Abundance decline in the avifauna of the European Union reveals cross?continental similarities in biodiversity change. Ecology and Evolution, 11(23), 16647–16660. https://doi.org/10.1002/ece3.8282
Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., ?tvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. D., Fiasca, B., … Znachor, P. (2020). Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water, 12(1), 260. https://doi.org/10.3390/w12010260
Caro, T., Rowe, Z., Berger, J., Wholey, P., & Dobson, A. (2022). An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conservation Letters, 15(3), e12868. https://doi.org/10.1111/conl.12868
Chase, J. M., Jeliazkov, A., Ladouceur, E., & Viana, D. S. (2020). Biodiversity conservation through the lens of metacommunity ecology. Annals of the New York Academy of Sciences, 1469(1), 86–104. https://doi.org/10.1111/nyas.14378
Dinerstein, E., Joshi, A. R., Vynne, C., Lee, A. T. L., Pharand-Deschênes, F., França, M., Fernando, S., Birch, T., Burkart, K., Asner, G. P., & Olson, D. (2020). A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Science Advances, 6(36), eabb2824. https://doi.org/10.1126/sciadv.abb2824
Estrada-Carmona, N., Sánchez, A. C., Remans, R., & Jones, S. K. (2022). Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proceedings of the National Academy of Sciences, 119(38), e2203385119. https://doi.org/10.1073/pnas.2203385119
Fan, J., Shen, S., Erwin, D. H., Sadler, P. M., MacLeod, N., Cheng, Q., Hou, X., Yang, J., Wang, X., Wang, Y., Zhang, H., Chen, X., Li, G., Zhang, Y., Shi, Y., Yuan, D., Chen, Q., Zhang, L., Li, C., & Zhao, Y. (2020). A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475), 272–277. https://doi.org/10.1126/science.aax4953
Halliday, F. W., Rohr, J. R., & Laine, A. (2020). Biodiversity loss underlies the dilution effect of biodiversity. Ecology Letters, 23(11), 1611–1622. https://doi.org/10.1111/ele.13590
Heinrich, M., Mah, J., & Amirkia, V. (2021). Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look. Molecules, 26(7), 1836. https://doi.org/10.3390/molecules26071836
Hochkirch, A., Samways, M. J., Gerlach, J., Böhm, M., Williams, P., Cardoso, P., Cumberlidge, N., Stephenson, P. J., Seddon, M. B., Clausnitzer, V., Borges, P. A. V., Mueller, G. M., Pearce?Kelly, P., Raimondo, D. C., Danielczak, A., & Dijkstra, K. B. (2021). A strategy for the next decade to address data deficiency in neglected biodiversity. Conservation Biology, 35(2), 502–509. https://doi.org/10.1111/cobi.13589
Hong, P., Schmid, B., De Laender, F., Eisenhauer, N., Zhang, X., Chen, H., Craven, D., De Boeck, H. J., Hautier, Y., Petchey, O. L., Reich, P. B., Steudel, B., Striebel, M., Thakur, M. P., & Wang, S. (2022). Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 25(2), 555–569. https://doi.org/10.1111/ele.13936
Jung, M., Arnell, A., De Lamo, X., García-Rangelm, S., Lewis, M., Mark, J., Merow, C., Miles, L., Ondo, I., Pironon, S., Ravilious, C., Rivers, M., Schepashenko, D., Tallowin, O., van Soesbergen, A., Govaerts, R., Boyle, B. L., Enquist, B. J., Feng, X., … Visconti, P. (2021). Areas of global importance for conserving terrestrial biodiversity, carbon, and water (Version 1.0) [Dataset]. Zenodo. https://doi.org/10.5281/ZENODO.5006332
Kour, D., Rana, K. L., Kaur, T., Yadav, N., Yadav, A. N., Kumar, M., Kumar, V., Dhaliwal, H. S., & Saxena, A. K. (2021). Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere, 31(1), 43–75. https://doi.org/10.1016/S1002-0160(20)60057-1
Kumar, M., Yadav, A. N., Saxena, R., Paul, D., & Tomar, R. S. (2021). Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatalysis and Agricultural Biotechnology, 31, 101883. https://doi.org/10.1016/j.bcab.2020.101883
Librán-Embid, F., Klaus, F., Tscharntke, T., & Grass, I. (2020). Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes—A systematic review. Science of The Total Environment, 732, 139204. https://doi.org/10.1016/j.scitotenv.2020.139204
Loreau, M., Barbier, M., Filotas, E., Gravel, D., Isbell, F., Miller, S. J., Montoya, J. M., Wang, S., Aussenac, R., Germain, R., Thompson, P. L., Gonzalez, A., & Dee, L. E. (2021). Biodiversity as insurance: From concept to measurement and application. Biological Reviews, 96(5), 2333–2354. https://doi.org/10.1111/brv.12756
Maasri, A., Jähnig, S. C., Adamescu, M. C., Adrian, R., Baigun, C., Baird, D. J., Batista?Morales, A., Bonada, N., Brown, L. E., Cai, Q., Campos?Silva, J. V., Clausnitzer, V., Contreras?MacBeath, T., Cooke, S. J., Datry, T., Delacámara, G., De Meester, L., Dijkstra, K. B., Do, V. T., … Worischka, S. (2022). A global agenda for advancing freshwater biodiversity research. Ecology Letters, 25(2), 255–263. https://doi.org/10.1111/ele.13931
Madzak, C. (2021). Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. Journal of Fungi, 7(7), 548. https://doi.org/10.3390/jof7070548
Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M., Ackerly, D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher, B. H., Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I., Quiñones, R. M., Stralberg, D., & Thorne, J. H. (2020). Climate?change refugia: Biodiversity in the slow lane. Frontiers in Ecology and the Environment, 18(5), 228–234. https://doi.org/10.1002/fee.2189
Pavoine, S. (2020). adiv: An R package to analyse biodiversity in ecology. Methods in Ecology and Evolution, 11(9), 1106–1112. https://doi.org/10.1111/2041-210X.13430
Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M., & Sardans, J. (2020). Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Global Change Biology, 26(4), 1962–1985. https://doi.org/10.1111/gcb.14981
Raven, P. H., & Wagner, D. L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118(2), e2002548117. https://doi.org/10.1073/pnas.2002548117
Simkin, R. D., Seto, K. C., McDonald, R. I., & Jetz, W. (2022). Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proceedings of the National Academy of Sciences, 119(12), e2117297119. https://doi.org/10.1073/pnas.2117297119
Spicer, R. A., Farnsworth, A., & Su, T. (2020). Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story. Plant Diversity, 42(4), 229–254. https://doi.org/10.1016/j.pld.2020.06.011
Tickner, D., Opperman, J. J., Abell, R., Acreman, M., Arthington, A. H., Bunn, S. E., Cooke, S. J., Dalton, J., Darwall, W., Edwards, G., Harrison, I., Hughes, K., Jones, T., Leclère, D., Lynch, A. J., Leonard, P., McClain, M. E., Muruven, D., Olden, J. D., … Young, L. (2020). Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience, 70(4), 330–342. https://doi.org/10.1093/biosci/biaa002
Trew, B. T., & Maclean, I. M. D. (2021). Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography, 30(4), 768–783. https://doi.org/10.1111/geb.13272
Wagner, D. L., Fox, R., Salcido, D. M., & Dyer, L. A. (2021). A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proceedings of the National Academy of Sciences, 118(2), e2002549117. https://doi.org/10.1073/pnas.2002549117
Wang, B., Kong, Q., Li, X., Zhao, J., Zhang, H., Chen, W., & Wang, G. (2020). A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients, 12(10), 3197. https://doi.org/10.3390/nu12103197
Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of The Total Environment, 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782
Yuan, Z., Ali, A., Ruiz?Benito, P., Jucker, T., Mori, A. S., Wang, S., Zhang, X., Li, H., Hao, Z., Wang, X., & Loreau, M. (2020). Above? and below?ground biodiversity jointly regulate temperate forest multifunctionality along a local?scale environmental gradient. Journal of Ecology, 108(5), 2012–2024. https://doi.org/10.1111/1365-2745.13378
Authors
Copyright (c) 2024 Le Hoang Nam, Nguyen Tuan Anh, Nguyen Thi Mai

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.