Illegal Logging and Its Impact on Forest Ecosystems in Southeast Asia
Abstract
Illegal logging poses a significant threat to forest ecosystems in Southeast Asia, compromising biodiversity, disrupting ecological balance, and undermining sustainable development efforts. The region's rich biodiversity and vital ecosystem services are increasingly jeopardized by unregulated logging practices, necessitating a thorough investigation of its impacts. This research aims to assess the extent of illegal logging in Southeast Asia and its effects on forest ecosystems. The study seeks to identify key drivers of illegal logging and analyze its implications for biodiversity and local communities. A mixed-methods approach was employed, combining quantitative data from satellite imagery and forest cover assessments with qualitative interviews of stakeholders, including local communities, government officials, and NGO representatives. Case studies from Indonesia, Malaysia, and Thailand were analyzed to provide insights into the dynamics of illegal logging. Findings reveal that illegal logging significantly contributes to deforestation and habitat loss, leading to declines in species populations and disruptions in ecosystem functions. Local communities reported negative impacts on their livelihoods and increased conflicts with wildlife as a result of habitat degradation. The study concludes that addressing illegal logging is crucial for the conservation of forest ecosystems in Southeast Asia. Effective governance, community engagement, and sustainable forest management practices are essential to combat illegal activities and protect biodiversity. Collaborative efforts among stakeholders will be vital for creating resilient forest ecosystems in the region.
Full text article
References
A. Odilov, B., Madraimov, A., Y. Yusupov, O., R. Karimov, N., Alimova, R., Z. Yakhshieva, Z., & A Akhunov, S. (2024). Utilizing Deep Learning and the Internet of Things to Monitor the Health of Aquatic Ecosystems to Conserve Biodiversity. Natural and Engineering Sciences, 9(1), 72–83. https://doi.org/10.28978/nesciences.1491795
Alcocer, I., Lima, H., Sugai, L. S. M., & Llusia, D. (2022). Acoustic indices as proxies for biodiversity: A meta?analysis. Biological Reviews, 97(6), 2209–2236. https://doi.org/10.1111/brv.12890
Atwoli, L., Baqui, A. H., Benfield, T., Bosurgi, R., Godlee, F., Hancocks, S., Horton, R., Laybourn-Langton, L., Monteiro, C. A., Norman, I., Patrick, K., Praities, N., Olde Rikkert, M. G. M., Rubin, E. J., Sahni, P., Smith, R., Talley, N. J., Turale, S., & Vázquez, D. (2021). Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. BMJ, n1734. https://doi.org/10.1136/bmj.n1734
Burns, F., Eaton, M. A., Burfield, I. J., Klva?ová, A., Šilarová, E., Staneva, A., & Gregory, R. D. (2021). Abundance decline in the avifauna of the European Union reveals cross?continental similarities in biodiversity change. Ecology and Evolution, 11(23), 16647–16660. https://doi.org/10.1002/ece3.8282
Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., ?tvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. D., Fiasca, B., … Znachor, P. (2020). Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water, 12(1), 260. https://doi.org/10.3390/w12010260
Caro, T., Rowe, Z., Berger, J., Wholey, P., & Dobson, A. (2022). An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conservation Letters, 15(3), e12868. https://doi.org/10.1111/conl.12868
Chase, J. M., Jeliazkov, A., Ladouceur, E., & Viana, D. S. (2020). Biodiversity conservation through the lens of metacommunity ecology. Annals of the New York Academy of Sciences, 1469(1), 86–104. https://doi.org/10.1111/nyas.14378
Dinerstein, E., Joshi, A. R., Vynne, C., Lee, A. T. L., Pharand-Deschênes, F., França, M., Fernando, S., Birch, T., Burkart, K., Asner, G. P., & Olson, D. (2020). A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Science Advances, 6(36), eabb2824. https://doi.org/10.1126/sciadv.abb2824
Estrada-Carmona, N., Sánchez, A. C., Remans, R., & Jones, S. K. (2022). Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proceedings of the National Academy of Sciences, 119(38), e2203385119. https://doi.org/10.1073/pnas.2203385119
Fan, J., Shen, S., Erwin, D. H., Sadler, P. M., MacLeod, N., Cheng, Q., Hou, X., Yang, J., Wang, X., Wang, Y., Zhang, H., Chen, X., Li, G., Zhang, Y., Shi, Y., Yuan, D., Chen, Q., Zhang, L., Li, C., & Zhao, Y. (2020). A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475), 272–277. https://doi.org/10.1126/science.aax4953
Halliday, F. W., Rohr, J. R., & Laine, A. (2020). Biodiversity loss underlies the dilution effect of biodiversity. Ecology Letters, 23(11), 1611–1622. https://doi.org/10.1111/ele.13590
Heinrich, M., Mah, J., & Amirkia, V. (2021). Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look. Molecules, 26(7), 1836. https://doi.org/10.3390/molecules26071836
Hochkirch, A., Samways, M. J., Gerlach, J., Böhm, M., Williams, P., Cardoso, P., Cumberlidge, N., Stephenson, P. J., Seddon, M. B., Clausnitzer, V., Borges, P. A. V., Mueller, G. M., Pearce?Kelly, P., Raimondo, D. C., Danielczak, A., & Dijkstra, K. B. (2021). A strategy for the next decade to address data deficiency in neglected biodiversity. Conservation Biology, 35(2), 502–509. https://doi.org/10.1111/cobi.13589
Hong, P., Schmid, B., De Laender, F., Eisenhauer, N., Zhang, X., Chen, H., Craven, D., De Boeck, H. J., Hautier, Y., Petchey, O. L., Reich, P. B., Steudel, B., Striebel, M., Thakur, M. P., & Wang, S. (2022). Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 25(2), 555–569. https://doi.org/10.1111/ele.13936
Jung, M., Arnell, A., De Lamo, X., García-Rangelm, S., Lewis, M., Mark, J., Merow, C., Miles, L., Ondo, I., Pironon, S., Ravilious, C., Rivers, M., Schepashenko, D., Tallowin, O., van Soesbergen, A., Govaerts, R., Boyle, B. L., Enquist, B. J., Feng, X., … Visconti, P. (2021). Areas of global importance for conserving terrestrial biodiversity, carbon, and water (Version 1.0) [Dataset]. Zenodo. https://doi.org/10.5281/ZENODO.5006332
Kour, D., Rana, K. L., Kaur, T., Yadav, N., Yadav, A. N., Kumar, M., Kumar, V., Dhaliwal, H. S., & Saxena, A. K. (2021). Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere, 31(1), 43–75. https://doi.org/10.1016/S1002-0160(20)60057-1
Kumar, M., Yadav, A. N., Saxena, R., Paul, D., & Tomar, R. S. (2021). Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatalysis and Agricultural Biotechnology, 31, 101883. https://doi.org/10.1016/j.bcab.2020.101883
Librán-Embid, F., Klaus, F., Tscharntke, T., & Grass, I. (2020). Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes—A systematic review. Science of The Total Environment, 732, 139204. https://doi.org/10.1016/j.scitotenv.2020.139204
Loreau, M., Barbier, M., Filotas, E., Gravel, D., Isbell, F., Miller, S. J., Montoya, J. M., Wang, S., Aussenac, R., Germain, R., Thompson, P. L., Gonzalez, A., & Dee, L. E. (2021). Biodiversity as insurance: From concept to measurement and application. Biological Reviews, 96(5), 2333–2354. https://doi.org/10.1111/brv.12756
Maasri, A., Jähnig, S. C., Adamescu, M. C., Adrian, R., Baigun, C., Baird, D. J., Batista?Morales, A., Bonada, N., Brown, L. E., Cai, Q., Campos?Silva, J. V., Clausnitzer, V., Contreras?MacBeath, T., Cooke, S. J., Datry, T., Delacámara, G., De Meester, L., Dijkstra, K. B., Do, V. T., … Worischka, S. (2022). A global agenda for advancing freshwater biodiversity research. Ecology Letters, 25(2), 255–263. https://doi.org/10.1111/ele.13931
Madzak, C. (2021). Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. Journal of Fungi, 7(7), 548. https://doi.org/10.3390/jof7070548
Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M., Ackerly, D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher, B. H., Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I., Quiñones, R. M., Stralberg, D., & Thorne, J. H. (2020). Climate?change refugia: Biodiversity in the slow lane. Frontiers in Ecology and the Environment, 18(5), 228–234. https://doi.org/10.1002/fee.2189
Otero, I., Farrell, K. N., Pueyo, S., Kallis, G., Kehoe, L., Haberl, H., Plutzar, C., Hobson, P., García?Márquez, J., Rodríguez?Labajos, B., Martin, J., Erb, K., Schindler, S., Nielsen, J., Skorin, T., Settele, J., Essl, F., Gómez?Baggethun, E., Brotons, L., … Pe’er, G. (2020). Biodiversity policy beyond economic growth. Conservation Letters, 13(4), e12713. https://doi.org/10.1111/conl.12713
Pavoine, S. (2020). adiv: An R package to analyse biodiversity in ecology. Methods in Ecology and Evolution, 11(9), 1106–1112. https://doi.org/10.1111/2041-210X.13430
Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M., & Sardans, J. (2020). Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Global Change Biology, 26(4), 1962–1985. https://doi.org/10.1111/gcb.14981
Perrigo, A., Hoorn, C., & Antonelli, A. (2020). Why mountains matter for biodiversity. Journal of Biogeography, 47(2), 315–325. https://doi.org/10.1111/jbi.13731
Raven, P. H., & Wagner, D. L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118(2), e2002548117. https://doi.org/10.1073/pnas.2002548117
Simkin, R. D., Seto, K. C., McDonald, R. I., & Jetz, W. (2022). Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proceedings of the National Academy of Sciences, 119(12), e2117297119. https://doi.org/10.1073/pnas.2117297119
Spicer, R. A., Farnsworth, A., & Su, T. (2020). Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story. Plant Diversity, 42(4), 229–254. https://doi.org/10.1016/j.pld.2020.06.011
Tickner, D., Opperman, J. J., Abell, R., Acreman, M., Arthington, A. H., Bunn, S. E., Cooke, S. J., Dalton, J., Darwall, W., Edwards, G., Harrison, I., Hughes, K., Jones, T., Leclère, D., Lynch, A. J., Leonard, P., McClain, M. E., Muruven, D., Olden, J. D., … Young, L. (2020). Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience, 70(4), 330–342. https://doi.org/10.1093/biosci/biaa002
Trew, B. T., & Maclean, I. M. D. (2021). Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography, 30(4), 768–783. https://doi.org/10.1111/geb.13272
Wagner, D. L., Fox, R., Salcido, D. M., & Dyer, L. A. (2021). A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proceedings of the National Academy of Sciences, 118(2), e2002549117. https://doi.org/10.1073/pnas.2002549117
Wang, B., Kong, Q., Li, X., Zhao, J., Zhang, H., Chen, W., & Wang, G. (2020). A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients, 12(10), 3197. https://doi.org/10.3390/nu12103197
Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of The Total Environment, 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782
Yuan, Z., Ali, A., Ruiz?Benito, P., Jucker, T., Mori, A. S., Wang, S., Zhang, X., Li, H., Hao, Z., Wang, X., & Loreau, M. (2020). Above? and below?ground biodiversity jointly regulate temperate forest multifunctionality along a local?scale environmental gradient. Journal of Ecology, 108(5), 2012–2024. https://doi.org/10.1111/1365-2745.13378
Authors
Copyright (c) 2024 Safiullah Aziz, Shazia Akhtar, Rafiullah Amin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.