Recent Progress in Electrochemical Sensors for Environmental Monitoring

Melly Angglena (1), Khalil Zaman (2), Zara Ali (3)
(1) Politeknik Negeri Ambon, Indonesia,
(2) Mazar University, Afghanistan,
(3) Khost University, Afghanistan

Abstract

The increasing demand for real-time monitoring of environmental pollutants has driven advancements in electrochemical sensors. These sensors offer high sensitivity, selectivity, and the ability to operate in diverse conditions, making them ideal for environmental applications. Recent developments in materials and technologies have further enhanced their performance. This research aims to review the latest advancements in electrochemical sensors specifically designed for environmental monitoring. The focus is on evaluating their effectiveness in detecting various pollutants, including heavy metals, pesticides, and gases. A systematic literature review was conducted, analyzing recent studies and innovations in electrochemical sensor technology. Key parameters such as sensitivity, detection limits, and response times were compared across different sensor types. Advances in nanomaterials and miniaturization techniques were also examined to assess their impact on sensor performance. The findings indicate significant improvements in electrochemical sensors, with many achieving detection limits in the nanomolar range. Sensors utilizing nanostructured materials demonstrated enhanced sensitivity and faster response times. Additionally, the integration of wireless technologies allows for real-time data transmission, facilitating more efficient environmental monitoring. Recent progress in electrochemical sensors represents a vital advancement in environmental monitoring technology. These sensors offer promising solutions for detecting pollutants with high precision and reliability. Future research should focus on further improving sensor robustness and expanding their applicability across various environmental contexts.

Full text article

Generated from XML file

References

Adampourezare, M., Hasanzadeh, M., Hoseinpourefeizi, M.-A., & Seidi, F. (2023). Iron/iron oxide-based magneto-electrochemical sensors/biosensors for ensuring food safety: Recent progress and challenges in environmental protection. RSC Advances, 13(19), 12760–12780. https://doi.org/10.1039/D2RA07415J

Almalki, F. A., Soufiene, B. O., Alsamhi, S. H., & Sakli, H. (2021). A Low-Cost Platform for Environmental Smart Farming Monitoring System Based on IoT and UAVs. Sustainability, 13(11), 5908. https://doi.org/10.3390/su13115908

Chaudhari, S. S., Patil, P. O., Bari, S. B., & Khan, Z. G. (2024). A comprehensive exploration of tartrazine detection in food products: Leveraging fluorescence nanomaterials and electrochemical sensors: Recent progress and future trends. Food Chemistry, 433, 137425. https://doi.org/10.1016/j.foodchem.2023.137425

Cureau, R. J., Pigliautile, I., & Pisello, A. L. (2022). A New Wearable System for Sensing Outdoor Environmental Conditions for Monitoring Hyper-Microclimate. Sensors, 22(2), 502. https://doi.org/10.3390/s22020502

Devu, C., Sreelakshmi, S., Chandana, R., Sivanand, P., Santhy, A., Lakshmi, K. C. S., & Rejithamol, R. (2024). Recent progress in tannin and lignin blended metal oxides and metal sulfides as smart materials for electrochemical sensor applications. Analytical Sciences, 40(6), 981–996. https://doi.org/10.1007/s44211-024-00544-4

González-González, R. B., Flores-Contreras, E. A., González-González, E., Torres Castillo, N. E., Parra-Saldívar, R., & Iqbal, H. M. N. (2023). Biosensor Constructs for the Monitoring of Persistent Emerging Pollutants in Environmental Matrices. Industrial & Engineering Chemistry Research, 62(11), 4503–4520. https://doi.org/10.1021/acs.iecr.2c00421

Gorle, D. B., Ponnada, S., Kiai, M. S., Nair, K. K., Nowduri, A., Swart, H. C., Ang, E. H., & Nanda, K. K. (2021). Review on recent progress in metal–organic framework-based materials for fabricating electrochemical glucose sensors. Journal of Materials Chemistry B, 9(38), 7927–7954. https://doi.org/10.1039/D1TB01403J

Guo, G., Li, K., Zhang, D., & Lei, M. (2022). Quantitative source apportionment and associated driving factor identification for soil potential toxicity elements via combining receptor models, SOM, and geo-detector method. Science of The Total Environment, 830, 154721. https://doi.org/10.1016/j.scitotenv.2022.154721

Gupta, R., Rahi Alhachami, F., Khalid, I., Majdi, H. Sh., Nisar, N., Mohamed Hasan, Y., Sivaraman, R., Romero Parra, R. M., Al Mashhadani, Z. I., & Fakri Mustafa, Y. (2024). Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Critical Reviews in Analytical Chemistry, 54(6), 1707–1728. https://doi.org/10.1080/10408347.2022.2128634

Harada, T., Kudo, K., Fujima, N., Yoshikawa, M., Ikebe, Y., Sato, R., Shirai, T., Bito, Y., Uwano, I., & Miyata, M. (2022). Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. RadioGraphics, 42(4), 1161–1176. https://doi.org/10.1148/rg.210054

Huang, C.-W., Lin, C., Nguyen, M. K., Hussain, A., Bui, X.-T., & Ngo, H. H. (2023). A review of biosensor for environmental monitoring: Principle, application, and corresponding achievement of sustainable development goals. Bioengineered, 14(1), 58–80. https://doi.org/10.1080/21655979.2022.2095089

Kang, H., Sung, S., Hong, J., Jung, S., Hong, T., Park, H. S., & Lee, D.-E. (2021). Development of a real-time automated monitoring system for managing the hazardous environmental pollutants at the construction site. Journal of Hazardous Materials, 402, 123483. https://doi.org/10.1016/j.jhazmat.2020.123483

Kross, A., Kaur, G., & Jaeger, J. A. G. (2022). A geospatial framework for the assessment and monitoring of environmental impacts of agriculture. Environmental Impact Assessment Review, 97, 106851. https://doi.org/10.1016/j.eiar.2022.106851

Lanzén, A., Mendibil, I., Borja, Á., & Alonso?Sáez, L. (2021). A microbial mandala for environmental monitoring: Predicting multiple impacts on estuarine prokaryote communities of the Bay of Biscay. Molecular Ecology, 30(13), 2969–2987. https://doi.org/10.1111/mec.15489

Li, H., Qi, H., Chang, J., Gai, P., & Li, F. (2022). Recent progress in homogeneous electrochemical sensors and their designs and applications. TrAC Trends in Analytical Chemistry, 156, 116712. https://doi.org/10.1016/j.trac.2022.116712

Li, Z., Zeng, W., & Li, Y. (2023). Recent Progress in MOF-Based Electrochemical Sensors for Non-Enzymatic Glucose Detection. Molecules, 28(13), 4891. https://doi.org/10.3390/molecules28134891

Liang, C., Zhang, H., Li, L., Gao, S., Xie, X., Chen, W.-T., Liu, Q., & Hu, G. (2024). Recent progress in designable nanostructure for heavy metal electrochemical sensors: From material synthesis to practical applications. Materials Today Communications, 41, 110546. https://doi.org/10.1016/j.mtcomm.2024.110546

Liu, Y., Xue, Q., Chang, C., Wang, R., Liu, Z., & He, L. (2022). Recent progress regarding electrochemical sensors for the detection of typical pollutants in water environments. Analytical Sciences, 38(1), 55–70. https://doi.org/10.2116/analsci.21SAR12

Malode, S. J., & Shetti, N. P. (2024). Current trends of electrochemical sensors in possible biodegradation for sustainable mitigation of environmental monitoring: Recent progress and future outlook. In Recent Trends and Perspectives on Electrochemical Sensors for Environmental Monitoring (pp. 671–702). Elsevier. https://doi.org/10.1016/B978-0-443-13388-6.00021-8

Maranzoni, A., D’Oria, M., & Rizzo, C. (2023). Quantitative flood hazard assessment methods: A review. Journal of Flood Risk Management, 16(1), e12855. https://doi.org/10.1111/jfr3.12855

Mauffrey, F., Cordier, T., Apothéloz?Perret?Gentil, L., Cermakova, K., Merzi, T., Delefosse, M., Blanc, P., & Pawlowski, J. (2021). Benthic monitoring of oil and gas offshore platforms in the North Sea using environmental DNA metabarcoding. Molecular Ecology, 30(13), 3007–3022. https://doi.org/10.1111/mec.15698

Miao, S., Pan, P.-Z., Li, S., Chen, J., & Konicek, P. (2021). Quantitative fracture analysis of hard rock containing double infilling flaws with a novel DIC-based method. Engineering Fracture Mechanics, 252, 107846. https://doi.org/10.1016/j.engfracmech.2021.107846

Mujan, I., Licina, D., Kljaji?, M., ?uli?, A., & An?elkovi?, A. S. (2021). Development of indoor environmental quality index using a low-cost monitoring platform. Journal of Cleaner Production, 312, 127846. https://doi.org/10.1016/j.jclepro.2021.127846

Musa, A. M., Kiely, J., Luxton, R., & Honeychurch, K. C. (2021). Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. TrAC Trends in Analytical Chemistry, 139, 116254. https://doi.org/10.1016/j.trac.2021.116254

Nate, Z., Gill, A. A. S., Chauhan, R., & Karpoormath, R. (2022). Recent progress in electrochemical sensors for detection and quantification of malaria. Analytical Biochemistry, 643, 114592. https://doi.org/10.1016/j.ab.2022.114592

Omar, N. A. S., Fen, Y. W., Irmawati, R., Hashim, H. S., Ramdzan, N. S. M., & Fauzi, N. I. M. (2022). A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. Nanomaterials, 12(14), 2365. https://doi.org/10.3390/nano12142365

Pandey, R. K., Kapoor, D., Kumar, D., Tonk, R., Kalikeri, S., Rao, S., & Jayaprakash, G. K. (2022). Recent progress in the graphene functionalized nanomaterial-based electrochemical sensors. In Functionalized Nanomaterial-Based Electrochemical Sensors (pp. 27–38). Elsevier. https://doi.org/10.1016/B978-0-12-823788-5.00007-7

Park, M., Cho, S., Yun, Y., La, M., Park, S. J., & Choi, D. (2021). A highly sensitive magnetic configuration?based triboelectric nanogenerator for multidirectional vibration energy harvesting and self?powered environmental monitoring. International Journal of Energy Research, 45(12), 18262–18274. https://doi.org/10.1002/er.7003

Ratcliffe, F. C., Uren Webster, T. M., Garcia De Leaniz, C., & Consuegra, S. (2021). A drop in the ocean: Monitoring fish communities in spawning areas using environmental DNA. Environmental DNA, 3(1), 43–54. https://doi.org/10.1002/edn3.87

Renaud, J., Karam, R., Salomon, M., & Couturier, R. (2023). Deep learning and gradient boosting for urban environmental noise monitoring in smart cities. Expert Systems with Applications, 218, 119568. https://doi.org/10.1016/j.eswa.2023.119568

Reyes-García, V., Tofighi-Niaki, A., Austin, B. J., Benyei, P., Danielsen, F., Fernández-Llamazares, Á., Sharma, A., Soleymani-Fard, R., & Tengö, M. (2022). Data Sovereignty in Community-Based Environmental Monitoring: Toward Equitable Environmental Data Governance. BioScience, 72(8), 714–717. https://doi.org/10.1093/biosci/biac048

Rodríguez?Ezpeleta, N., Zinger, L., Kinziger, A., Bik, H. M., Bonin, A., Coissac, E., Emerson, B. C., Lopes, C. M., Pelletier, T. A., Taberlet, P., & Narum, S. (2021). Biodiversity monitoring using environmental DNA. Molecular Ecology Resources, 21(5), 1405–1409. https://doi.org/10.1111/1755-0998.13399

Shi, Z., Xia, L., & Li, G. (2023). Recent Progress of Electrochemical Sensors in Food Analysis. Chemosensors, 11(9), 478. https://doi.org/10.3390/chemosensors11090478

Svendsen, B. T., Øiseth, O., Frøseth, G. T., & Rønnquist, A. (2023). A hybrid structural health monitoring approach for damage detection in steel bridges under simulated environmental conditions using numerical and experimental data. Structural Health Monitoring, 22(1), 540–561. https://doi.org/10.1177/14759217221098998

Tripathy, B., Dash, A., & Das, A. P. (2024). Detection of Environmental Microfiber Pollutants through Vibrational Spectroscopic Techniques: Recent Advances of Environmental Monitoring and Future Prospects. Critical Reviews in Analytical Chemistry, 54(7), 1925–1935. https://doi.org/10.1080/10408347.2022.2144994

Xue, R., Liu, Y.-S., Huang, S.-L., & Yang, G.-Y. (2023). Recent Progress of Covalent Organic Frameworks Applied in Electrochemical Sensors. ACS Sensors, 8(6), 2124–2148. https://doi.org/10.1021/acssensors.3c00269

Yao, L., Zhu, W., Shi, J., Xu, T., Qu, G., Zhou, W., Yu, X.-F., Zhang, X., & Jiang, G. (2021). Detection of coronavirus in environmental surveillance and risk monitoring for pandemic control. Chemical Society Reviews, 50(6), 3656–3676. https://doi.org/10.1039/D0CS00595A

Zhang, S., Zhang, M., Qiao, Y., Li, X., & Li, S. (2022). Does improvement of environmental information transparency boost firms’ green innovation? Evidence from the air quality monitoring and disclosure program in China. Journal of Cleaner Production, 357, 131921. https://doi.org/10.1016/j.jclepro.2022.131921

Zhong, B., Guo, J., Zhang, L., Wu, H., Li, H., & Wang, Y. (2022). A blockchain-based framework for on-site construction environmental monitoring: Proof of concept. Building and Environment, 217, 109064. https://doi.org/10.1016/j.buildenv.2022.109064

Zinetullina, A., Yang, M., Khakzad, N., Golman, B., & Li, X. (2021). Quantitative resilience assessment of chemical process systems using functional resonance analysis method and Dynamic Bayesian network. Reliability Engineering & System Safety, 205, 107232. https://doi.org/10.1016/j.ress.2020.107232

Authors

Melly Angglena
angglenamelly@gmail.com (Primary Contact)
Khalil Zaman
Zara Ali
Angglena, M., Zaman, K., & Ali, Z. (2024). Recent Progress in Electrochemical Sensors for Environmental Monitoring. Research of Scientia Naturalis, 1(4), 206–216. https://doi.org/10.70177/scientia.v1i4.1575

Article Details

Most read articles by the same author(s)