The Impact of Climate Change on Forest Ecosystems: A Biomolecular Perspective

Nong Chai (1), Ming Pong (2), Ton Kiat (3)
(1) Chulalongkorn University, Thailand,
(2) Chiang Mai University, Thailand,
(3) Assumption University, Thailand

Abstract

Climate change has emerged as one of the most significant environmental challenges of our time, profoundly affecting forest ecosystems worldwide. Recent studies have revealed that alterations in temperature, precipitation patterns, and atmospheric CO2 concentrations are causing unprecedented changes at the molecular level within forest organisms. Understanding these biomolecular responses is crucial for predicting and managing forest ecosystem resilience in the face of climate change. This study aimed to investigate the molecular mechanisms underlying forest species' adaptation to climate change and identify key biomarkers associated with stress response and resilience. The research employed a comprehensive approach combining transcriptomics, proteomics, and metabolomics analyses of various forest species across different climatic zones. Samples were collected from 20 forest sites over a three-year period, analyzing molecular responses to temperature fluctuations, drought stress, and elevated CO2 levels. Results demonstrated significant alterations in gene expression patterns related to heat shock proteins, antioxidant enzymes, and stress-responsive transcription factors. Notable changes were observed in metabolic pathways involved in carbon fixation, water use efficiency, and secondary metabolite production. The study identified 15 novel molecular markers associated with climate resilience in forest species. Furthermore, findings revealed distinct biomolecular adaptation strategies among different species and ecological niches. This research concludes that understanding molecular responses to climate change is essential for developing effective forest conservation strategies and predicting ecosystem adaptability. The identified molecular markers can serve as valuable tools for monitoring forest health and implementing targeted conservation measures in the face of ongoing climate change.

Full text article

Generated from XML file

References

Adu-Acheampong, S., Kyei-Mensah, C., & Kyerematen, R. (2022). Climate Change Adaptation: An Ecosystem-Based Approach for Livelihood Improvement of Fringe Communities around Worobong South Forest Reserve in Ghana. International Journal of Forestry Research, 2022, 1–9. https://doi.org/10.1155/2022/2435419

Alharbi, N., Teerakanok, S., Satterthwaite, J. D., Giordano, R., & Silikas, N. (2022). Quantitative nano-mechanical mapping AFM-based method for elastic modulus and surface roughness measurements of model polymer infiltrated ceramics. Dental Materials, 38(6), 935–945. https://doi.org/10.1016/j.dental.2022.03.002

Badea, O. (2021). Climate Change and Air Pollution Effect on Forest Ecosystems. Forests, 12(12), 1642. https://doi.org/10.3390/f12121642

Barker, R. D., Barker, S. L. L., Wilson, S., & Stock, E. D. (2021). Quantitative Mineral Mapping of Drill Core Surfaces I: A Method for µ XRF Mineral Calculation and Mapping of Hydrothermally Altered, Fine-Grained Sedimentary Rocks from a Carlin-Type Gold Deposit. Economic Geology, 116(4), 803–819. https://doi.org/10.5382/econgeo.4803

Bruno, V., Betti, M., Mauro, J., Buda, A., & Vizza, E. (2024). Biomolecular Classification in Endometrial Cancer: Onset, Evolution, and Further Perspectives: A Critical Review. Cancers, 16(17), 2959. https://doi.org/10.3390/cancers16172959

Cantin, G., Ducrot, A., & Funatsu, B. M. (2021). Mathematical modeling of forest ecosystems by a reaction–diffusion–advection system: Impacts of climate change and deforestation. Journal of Mathematical Biology, 83(6–7), 66. https://doi.org/10.1007/s00285-021-01696-x

Chen, W., Liu, S., Zhao, S., Zhu, Y., Feng, S., Wang, Z., Wu, Y., Xiao, J., Yuan, W., Yan, W., Ju, H., & Wang, Q. (2023). Temporal dynamics of ecosystem, inherent, and underlying water use efficiencies of forests, grasslands, and croplands and their responses to climate change. Carbon Balance and Management, 18(1), 13. https://doi.org/10.1186/s13021-023-00232-2

Cui, F., Wang, B., Zhang, Q., Tang, H., De Maeyer, P., Hamdi, R., & Dai, L. (2021). Climate change versus land-use change—What affects the ecosystem services more in the forest-steppe ecotone? Science of The Total Environment, 759, 143525. https://doi.org/10.1016/j.scitotenv.2020.143525

Deflandre, L., & Dauphin-Ducharme, P. (2024). “Binding” or “Binding and Switching”? A Perspective on Resolving Conformational Changes of Surface-Attached Biomolecular Receptors. ACS Sensors, acssensors.4c01677. https://doi.org/10.1021/acssensors.4c01677

Dey, S., Rivas-Barbosa, R., Sciortino, F., Zaccarelli, E., & Zijlstra, P. (2024). Biomolecular interactions on densely coated nanoparticles: A single-molecule perspective. Nanoscale, 16(9), 4872–4879. https://doi.org/10.1039/D3NR06140J

Fadairo, O., Olajuyigbe, S., Osayomi, T., Adelakun, O., Olaniyan, O., Olutegbe, S., & Adeleke, O. (2021). Climate Change, Rural Livelihoods, and Ecosystem Nexus: Forest Communities in Agroecological zones of Nigeria. In N. Oguge, D. Ayal, L. Adeleke, & I. Da Silva (Eds.), African Handbook of Climate Change Adaptation (pp. 1169–1192). Springer International Publishing. https://doi.org/10.1007/978-3-030-45106-6_155

Fotelli, M. N. (2021). Impacts of Climate Change on Tree Physiology and Responses of Forest Ecosystems. Forests, 12(12), 1728. https://doi.org/10.3390/f12121728

Ga?ka, M., Obremska, M., & Feurdean, A. (2022). Forest ecosystem development in European nemoreal-boreal forest (NE Poland) over the last 2200 years: Impact of human activity and climate change. The Holocene, 32(7), 650–663. https://doi.org/10.1177/09596836221088249

Guo, F., Yang, Y., & Gao, G. (2024). Climate Change Impact on Three Important Species of Wild Fruit Forest Ecosystems: Assessing Habitat Loss and Climatic Niche Shift. Forests, 15(8), 1281. https://doi.org/10.3390/f15081281

Gurung, L. J., Miller, K. K., Venn, S., & Bryan, B. A. (2021). Contributions of non-timber forest products to people in mountain ecosystems and impacts of recent climate change. Ecosystems and People, 17(1), 447–463. https://doi.org/10.1080/26395916.2021.1957021

Kanwar, N., & Kuniyal, J. C. (2022). Vulnerability assessment of forest ecosystems focusing on climate change, hazards and anthropogenic pressures in the cold desert of Kinnaur district, northwestern Indian Himalaya. Journal of Earth System Science, 131(1), 51. https://doi.org/10.1007/s12040-021-01775-z

Koricho, H. H., Seboka, A. D., Fufa, F., Gebreyesus, T., & Song, S. (2022). Study on the ecosystem services of urban forests: Implications for climate change mitigation in the case of Adama City of Oromiya Regional Sate, Ethiopia. Urban Ecosystems, 25(2), 575–584. https://doi.org/10.1007/s11252-021-01152-0

Kumar, A., Kumar, P., Srivastava, V. C., Giri, A., Pant, D., & Verma, R. K. (2023). Terrestrial Carbon Stock and Sink Potential of Indian Himalayan Forest Ecosystem: A Tool for Combating Climate Change. In G. Mishra, K. Giri, A. J. Nath, & R. Francaviglia (Eds.), Soil Carbon Dynamics in Indian Himalayan Region (pp. 77–91). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3303-7_5

Kuznetsova, Yu. S., Modina, M. A., Khekert, E. V., Voskanyan, A. A., Pismenskaya, Yu. V., & Shkoda, V. V. (2024). The impact of climate change on the forest ecosystems of Krasnodar Region. BIO Web of Conferences, 103, 00001. https://doi.org/10.1051/bioconf/202410300001

Liu, D., Yan, H., Yu, C. L., Yin, S. P., Wang, C. W., & Gong, L. J. (2023). Quantitative Assessment of Climate Change Impacts on Forest Ecosystems. Forest Science, 69(2), 143–157. https://doi.org/10.1093/forsci/fxac054

Martínez?Greene, J. A., Hernández?Ortega, K., Quiroz?Baez, R., Resendis?Antonio, O., Pichardo?Casas, I., Sinclair, D. A., Budnik, B., Hidalgo?Miranda, A., Uribe?Querol, E., Ramos?Godínez, M. D. P., & Martínez?Martínez, E. (2021). Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer?based precipitation and size exclusion chromatography. Journal of Extracellular Vesicles, 10(6), e12087. https://doi.org/10.1002/jev2.12087

Mei, P., Malik, V., Harper, R. W., & Jiménez, J. M. (2021). Air pollution, human health and the benefits of trees: A biomolecular and physiologic perspective. Arboricultural Journal, 43(1), 19–40. https://doi.org/10.1080/03071375.2020.1854995

Mel’nikov, Y. (2022). The dynamics of the bird population in the forest ecosystems of Eastern Siberia (South Baikal) under the conditions of the modern climate changes. IOP Conference Series: Earth and Environmental Science, 981(4), 042056. https://doi.org/10.1088/1755-1315/981/4/042056

Moreau, L., Thiffault, E., Kurz, W. A., & Beauregard, R. (2023). Under what circumstances can the forest sector contribute to 2050 climate change mitigation targets? A study from forest ecosystems to landfill methane emissions for the province of Quebec, Canada. GCB Bioenergy, 15(9), 1119–1139. https://doi.org/10.1111/gcbb.13081

Morera, A., LeBlanc, H., Martínez De Aragón, J., Bonet, J. A., & de-Miguel, S. (2024). Analysis of climate change impacts on the biogeographical patterns of species-specific productivity of socioeconomically important edible fungi in Mediterranean forest ecosystems. Ecological Informatics, 81, 102557. https://doi.org/10.1016/j.ecoinf.2024.102557

Peccati, F., & Jiménez-Osés, G. (2021). Enthalpy–Entropy Compensation in Biomolecular Recognition: A Computational Perspective. ACS Omega, 6(17), 11122–11130. https://doi.org/10.1021/acsomega.1c00485

Rank, P. H., Vaghasiya, D. R., Lunagaria, M. M., Patel, R. J., Tiwari, M. K., & Rank, H. D. (2023). Climate change impacts on water flux dynamics in Shingoda basin having agriculture and forest ecosystems: A comprehensive analysis. Journal of Agrometeorology, 25(3). https://doi.org/10.54386/jam.v25i3.2284

Resco De Dios, V., Hedo, J., Cunill Camprubí, À., Thapa, P., Martínez Del Castillo, E., Martínez De Aragón, J., Bonet, J. A., Balaguer-Romano, R., Díaz-Sierra, R., Yebra, M., & Boer, M. M. (2021). Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems. Science of The Total Environment, 797, 149104. https://doi.org/10.1016/j.scitotenv.2021.149104

Roces-Díaz, J. V., Vayreda, J., De Cáceres, M., García-Valdés, R., Banqué-Casanovas, M., Morán-Ordóñez, A., Brotons, L., de-Miguel, S., & Martínez-Vilalta, J. (2021). Temporal changes in Mediterranean forest ecosystem services are driven by stand development, rather than by climate-related disturbances. Forest Ecology and Management, 480, 118623. https://doi.org/10.1016/j.foreco.2020.118623

Scharrer, E., & Ramasubramanian, S. (2021). Quantitative Research Methods in Communication: The Power of Numbers for Social Justice (1st ed.). Routledge. https://doi.org/10.4324/9781003091653

Stokely, T. D. (2024). The devil is in the details: Experiment reveals how a forest?dwelling scavenger, and their excrement, may buffer ecosystem processes from climate change. Global Change Biology, 30(9), e17499. https://doi.org/10.1111/gcb.17499

Syeeda Tanjin Ahmed, S. M. Kamran Ashraf, Md Tanbheer Rana, Saleha Khatun Ripta, Mst. Sohela Afroz, S. M. Sanjida Tasnim Urmi, Sumaiya Binte Rahman Asha, Shoumika Binte Shafiqe, Al Rahat, & Kazi Kamrul Islam. (2024). Valuation of Madhupur Sal Forest Ecosystem Services and Carbon Sequestration Potency in Bangladesh: An Avenue for Mitigating Climate Change Impact. Contemporary Problems of Ecology, 17(3), 450–459. https://doi.org/10.1134/S1995425524030016

Tirkes, T., Yadav, D., Conwell, D. L., Territo, P. R., Zhao, X., Persohn, S. A., Dasyam, A. K., Shah, Z. K., Venkatesh, S. K., Takahashi, N., Wachsman, A., Li, L., Li, Y., Pandol, S. J., Park, W. G., Vege, S. S., Hart, P. A., Topazian, M., Andersen, D. K., … On behalf of the Consortium for the Study of Chronic Pancreatitis, Diabetes, Pancreatic Cancer (CPDPC). (2022). Quantitative MRI of chronic pancreatitis: Results from a multi-institutional prospective study, magnetic resonance imaging as a non-invasive method for assessment of pancreatic fibrosis (MINIMAP). Abdominal Radiology, 47(11), 3792–3805. https://doi.org/10.1007/s00261-022-03654-7

Touhami, I., Rzigui, T., Zribi, L., Ennajah, A., Dhahri, S., Aouinti, H., Elaieb, M. T., Fkiri, S., Ghazghazi, H., Khorchani, A., Candelier, K., Khaldi, A., & Khouja, M. L. (2023). Climate change?induced ecosystem disturbance: A review on sclerophyllous and semi?deciduous forests in Tunisia. Plant Biology, 25(4), 481–497. https://doi.org/10.1111/plb.13524

Tyagi, K., & Kumar, M. (2023). Vulnerability assessment of forest ecosystems: Climate change perspective. In Climate Change in the Himalayas (pp. 235–257). Elsevier. https://doi.org/10.1016/B978-0-443-19415-3.00014-1

Vater, A., Caster, R., Haddox, H., Olshefsky, A., Said, M., King, N. P., & Siegel, J. B. (2022). Perspective: Successes and Challenges in Developing a New Biomolecular Modeling and Design Summer High School Research Internship. Frontiers in Education, 7, 908936. https://doi.org/10.3389/feduc.2022.908936

Vido, J., & Nalevanková, P. (2021). Impact of Natural Hazards on Forest Ecosystems and Their Surrounding Landscape under Climate Change. Water, 13(7), 979. https://doi.org/10.3390/w13070979

Wood, J. D., Detto, M., Browne, M., Kraft, N. J. B., Konings, A. G., Fisher, J. B., Quetin, G. R., Trugman, A. T., Magney, T. S., Medeiros, C. D., Vinod, N., Buckley, T. N., & Sack, L. (2024). The Ecosystem as Super-Organ/ism, Revisited: Scaling Hydraulics to Forests under Climate Change. Integrative And Comparative Biology, 64(2), 424–440. https://doi.org/10.1093/icb/icae073

Zerva, A. (2022). The Impacts of Climate Change on the Forest Ecosystems of the Mediterranean. In E. Manolas & W. Leal Filho (Eds.), The Academic Language of Climate Change: An Introduction for Students and Non-native Speakers (pp. 145–149). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80382-911-120221021

Zhao, J., Xie, H., Ma, J., & Wang, K. (2021). Integrated remote sensing and model approach for impact assessment of future climate change on the carbon budget of global forest ecosystems. Global and Planetary Change, 203, 103542. https://doi.org/10.1016/j.gloplacha.2021.103542

Authors

Nong Chai
nongchai@gmail.com (Primary Contact)
Ming Pong
Ton Kiat
Chai, N., Pong, M., & Kiat, T. (2024). The Impact of Climate Change on Forest Ecosystems: A Biomolecular Perspective. Research of Scientia Naturalis, 1(3), 167–178. https://doi.org/10.70177/scientia.v1i3.1572

Article Details