Regulating Algorithmic Bias: Normative Challenges of AI Ethics in Automated Decision-Making

Magnus Andersson (1), Maria Lindström (2), Johan Nilsson (3)
(1) Stockholm School of Economics, Sweden,
(2) Uppsala University, Sweden,
(3) KTH Royal Institute of Technology, Sweden

Abstract

Background. The integration of artificial intelligence (AI) into automated decision-making systems has introduced significant ethical and legal concerns, particularly regarding algorithmic bias.


Purpose. These biases can perpetuate systemic discrimination, distort outcomes in critical sectors such as healthcare, finance, and criminal justice, and challenge the foundational principles of fairness and transparency. Despite widespread recognition of the issue, there remains a normative gap in regulatory responses across jurisdictions.  


Method. This study aims to explore the ethical challenges of algorithmic bias and assess the adequacy of existing legal frameworks in addressing these concerns.


Results. Using a normative legal research design, the study employs comparative analysis across selected regulatory regimes in the EU, US, and Asia, supported by doctrinal analysis of AI-related policies and ethical codes. Findings reveal fragmented regulatory landscapes, a lack of binding accountability mechanisms, and insufficient integration of ethical principles into enforceable legal norms.


Conclusion. The study concludes that an interdisciplinary approach—merging ethical theory with legal doctrine—is essential to regulate algorithmic bias effectively. A normative framework grounded in transparency, accountability, and inclusivity is proposed to guide future legislation and policy development.

Full text article

Generated from XML file

References

Aninze, A., & Bhogal, J. (2024). Artificial Intelligence Life Cycle: The Detection and Mitigation of Bias. Dalam Goncalves C. & Rouco J.C.D. (Ed.), Proc. Int. Conf. AI Res., ICAIR (hlm. 40–49). Academic Conferences International Limited; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85215706792&partnerID=40&md5=b6e143bd6aa02cf8eb1411594d249c3f

Archambault, S. G., Ramachandran, S., Acosta, E., & Fu, S. (2024). Ethical dimensions of algorithmic literacy for college students: Case studies and cross-disciplinary connections. Journal of Academic Librarianship, 50(3). Scopus. https://doi.org/10.1016/j.acalib.2024.102865

Bail, C. A. (2024). Can Generative AI improve social science? Proceedings of the National Academy of Sciences of the United States of America, 121(21). Scopus. https://doi.org/10.1073/pnas.2314021121

Ball Dunlap, P. A., & Michalowski, M. (2024). Advancing AI Data Ethics in Nursing: Future Directions for Nursing Practice, Research, and Education. JMIR Nursing, 7. Scopus. https://doi.org/10.2196/62678

Be?uli?, H., Begagi?, E., Skomorac, R., Mašovi?, A., Selimovi?, E., & Pojski?, M. (2024). ChatGPT’s contributions to the evolution of neurosurgical practice and education: A systematic review of benefits, concerns and limitations. Medicinski Glasnik, 21(1), 126–131. Scopus. https://doi.org/10.17392/1661-23

Carnevale, A. (2024). Empowering Vulnerability: Decolonizing AI Ethics for Inclusive Epistemological Innovation. BioLaw Journal, 2024(Special Issue 1), 25–37. Scopus. https://doi.org/10.15168/2284-4503-3299

Devrio, A., Eslami, M., & Holstein, K. (2024). Building, Shifting, & Employing Power: A Taxonomy of Responses From Below to Algorithmic Harm. ACM Conf. Fairness, Account., Transpar., FAccT, 1093–1106. Scopus. https://doi.org/10.1145/3630106.3658958

Gerbaix, S., Michel, S., & Bidan, M. (2024). Coping with Artificial Intelligence Ethical Dilemma and Ethical Position Choices? Dalam Filipe J., Smialek M., Brodsky A., & Hammoudi S. (Ed.), International Conference on Enterprise Information Systems, ICEIS - Proceedings (Vol. 1, hlm. 382–388). Science and Technology Publications, Lda; Scopus. https://doi.org/10.5220/0012726000003690

Ghasemaghaei, M., & Kordzadeh, N. (2024). Ethics in the Age of Algorithms: Unravelling the Impact of Algorithmic Unfairness on Data Analytics Recommendation Acceptance. Information Systems Journal. Scopus. https://doi.org/10.1111/isj.12572

Giansanti, D. (2024). AI in Cytopathology: A Narrative Umbrella Review on Innovations, Challenges, and Future Directions. Journal of Clinical Medicine, 13(22). Scopus. https://doi.org/10.3390/jcm13226745

Gutiérrez-Caneda, B., Lindén, C.-G., & Vázquez-Herrero, J. (2024). Ethics and journalistic challenges in the age of artificial intelligence: Talking with professionals and experts. Frontiers in Communication, 9. Scopus. https://doi.org/10.3389/fcomm.2024.1465178

Haykal, D. (2024). Emerging and Pioneering AI Technologies in Aesthetic Dermatology: Sketching a Path Toward Personalized, Predictive, and Proactive Care. Cosmetics, 11(6). Scopus. https://doi.org/10.3390/cosmetics11060206

Hughes, A. T., Yarick, J. C., Ruzycki, N., Geldimuradov, H. S., Langham, S. L., & Miller, K. (2024). Developing an AI and Engineering Design Hybrid-Remote Summer Camp Program for Underrepresented Students (Evaluation). ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202052336&partnerID=40&md5=7958931958b764fdce38e0cffd405b81

Ibrahim, S. M., Alshraideh, M. A., Leiner, M., Aldajani, I. M., & Ouarda, B. (2024). Artificial intelligence ethics: Ethical consideration and regulations from theory to practice. IAES International Journal of Artificial Intelligence, 13(3), 3703–3714. Scopus. https://doi.org/10.11591/ijai.v13.i3.pp3703-3714

Jedli?ková, A. (2024). Ethical considerations in Risk management of autonomous and intelligent systems. Ethics and Bioethics (in Central Europe), 14(1–2), 80–95. Scopus. https://doi.org/10.2478/ebce-2024-0007

Karpouzis, K. (2024). Artificial Intelligence in Education: Ethical Considerations and Insights from Ancient Greek Philosophy. ACM Int. Conf. Proc. Ser. ACM International Conference Proceeding Series. Scopus. https://doi.org/10.1145/3688671.3688772

Lasisi, M., Kolade, K., & Rotimi, O. (2024). Data Science. Dalam Encyclopedia of Libraries, Librarianship, and Information Science, First Edition, Four Volume Set (Vol. 4, hlm. V4:89-V4:96). Elsevier; Scopus. https://doi.org/10.1016/B978-0-323-95689-5.00268-6

Machado, J., Sousa, R., Peixoto, H., & Abelha, A. (2024). Ethical Decision-Making in Artificial Intelligence: A Logic Programming Approach. AI (Switzerland), 5(4), 2707–2724. Scopus. https://doi.org/10.3390/ai5040130

Mahabub, S., Das, B. C., & Hossain, M. R. (2024). Advancing healthcare transformation: AI-driven precision medicine and scalable innovations through data analytics. Edelweiss Applied Science and Technology, 8(6), 8322–8332. Scopus. https://doi.org/10.55214/25768484.v8i6.3794

Mahto, M. K., & Rajavikram, G. (2024). Fundamentals of AI and communication networks: Applications in human social activities. Dalam Intel. Netw.: Tech., and Appl. (hlm. 1–17). CRC Press; Scopus. https://doi.org/10.1201/9781003541363-1

Mejri, O., Waedt, K., Yatagha, R., Edeh, N., & Sebastiao, C. L. (2024). Ensuring trustworthy AI for sensitive infrastructure using Knowledge Representation. Dalam Klein M., A.-L.-K.-S. 2 Gesellschaft fur Informatik Berlin, Krupka D., A.-L.-K.-S. 2 Gesellschaft fur Informatik Berlin, Winter C., A. 45 Gesellschaft fur Informatik Bonn, Gergeleit M., P. 3251 Hochschule RheinMain Wiesbaden, Martin L., & P. 3251 Hochschule RheinMain Wiesbaden (Ed.), Lect. Notes Informatics (LNI), Proc. - Series Ges. Inform. (GI) (Vol. 352, hlm. 1929–1938). Gesellschaft fur Informatik (GI); Scopus. https://doi.org/10.18420/inf2024_167

Mohamed, M. S. P. (2024). Exploring Ethical Dimensions of AI-enhanced Language Education: A Literature Perspective. Technology in Language Teaching and Learning, 6(3). Scopus. https://doi.org/10.29140/tltl.v6n3.1813

Mokoena, N., & Obagbuwa, I. C. (2024). An analysis of artificial intelligence automation in digital music streaming platforms for improving consumer subscription responses: A review. Frontiers in Artificial Intelligence, 7. Scopus. https://doi.org/10.3389/frai.2024.1515716

Murikah, W., Nthenge, J. K., & Musyoka, F. M. (2024). Bias and ethics of AI systems applied in auditing—A systematic review. Scientific African, 25. Scopus. https://doi.org/10.1016/j.sciaf.2024.e02281

Parthasarathy, P. D., Lakshmi, T. G., Indra, R., Spruha, S., & Joshi, S. (2024). Digital Conscience: Investigating the State of Ethics in CS Curricula in India. ICER - ACM Conf. Int. Comput. Educ. Res., 2, 549–550. Scopus. https://doi.org/10.1145/3632621.3671434

Reddy, K. S., Kethan, M., Mahabub Basha, S., Singh, A., Kumar, P., & Ashalatha, D. (2024). Ethical and Legal Implications of AI on Business and Employment: Privacy, Bias, and Accountability. Int. Conf. Knowl. Eng. Commun. Syst., ICKECS. 2024 International Conference on Knowledge Engineering and Communication Systems, ICKECS 2024. Scopus. https://doi.org/10.1109/ICKECS61492.2024.10616875

Vemulapalli, G. (2024). Charting the Ethical Horizon: A Deep Dive Into AI Ethics, Unraveling the Moral Threads in Machine Intelligence Development. Dalam Artificial Intelligence and Machine Learning for Sustainable Development: Innovations, Challenges, and Applications (hlm. 209–220). CRC Press; Scopus. https://doi.org/10.1201/9781003497189-16

Wang, J., & Wu, Q. (2024). Conversation N: Visualization Installation Design Based on Voice Interaction. Dalam Stephanidis C., Antona M., Ntoa S., & Salvendy G. (Ed.), Commun. Comput. Info. Sci.: Vol. 1958 CCIS (hlm. 78–85). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-49215-0_10

Williams, D. P. (2024). Disabling AI: Biases and Values Embedded in Artificial Intelligence. Dalam Handb. On the Ethics of Artificial Intelligence (hlm. 246–261). Edward Elgar Publishing Ltd.; Scopus. https://doi.org/10.4337/9781803926728.00022

Ziosi, M., Watson, D., & Floridi, L. (2024). A Genealogical Approach to Algorithmic Bias. Minds and Machines, 34(2). Scopus. https://doi.org/10.1007/s11023-024-09672-2

Authors

Magnus Andersson
manuuusss@gmail.com (Primary Contact)
Maria Lindström
Johan Nilsson
Andersson, M., Lindström, M., & Nilsson, J. (2025). Regulating Algorithmic Bias: Normative Challenges of AI Ethics in Automated Decision-Making. Rechtsnormen: Journal of Law, 3(2), 170–179. Retrieved from https://journal.ypidathu.or.id/index.php/rjl/article/view/2214

Article Details

No Related Submission Found