Sustainability in Quantum Optics: Future Research in Renewable Energy

Amina Intes (1), Uwe Barroso (2), Wolnough Cale (3)
(1) University of Southern Denmark, Denmark,
(2) Isinki University of Helsinki Finland, Finland,
(3) Chernihiv National Technological University, Ukraine

Abstract

Quantum optics is a field that has shown great potential in developing renewable energy technology. The interaction between light and matter on the quantum scale opens up opportunities for higher energy efficiency and more sustainable energy sources. However, further research is needed to integrate the principles of quantum optics into technologies that can be widely applied in the renewable energy sector. This research explores how quantum optics-based technologies can be developed and integrated into renewable energy applications to increase efficiency and sustainability. This research seeks to identify and test various approaches in quantum optics that can improve renewable energy generation and storage methods. The methods used include laboratory experiments and computer simulations to test the effectiveness of various quantum optical configurations in enhancing the energy conversion process. A multi-disciplinary approach with collaboration between physicists, engineers, and materials experts is used to achieve a deeper understanding of the potential of this technology. The research results show that using quantum entanglement and non-linear phenomena in quantum optics can significantly improve the efficiency of solar energy collection and conversion. This technique has succeeded in increasing the conversion efficiency of solar cells from conventional models by 10 to 15 percent in laboratory conditions. The conclusions of this study confirm that quantum optics have significant potential to improve sustainability and efficiency in renewable energy technologies. With further research and development, quantum optics-based technologies could contribute to global efforts to reduce dependence on fossil fuels and tackle climate change. Thus, integrating quantum optical principles into renewable energy systems should be a significant focus in future research

Full text article

Generated from XML file

References

Agarwal, K. (2023). The Compressed Baryonic Matter (CBM) Experiment at FAIR – Physics, Status and Prospects. Physica Scripta. https://doi.org/10.1088/1402-4896/acbca7

Alam, N., Thapliyal, K., Pathak, A., Sen, B., Verma, A., & Mandal, S. (2019). Bose-condensed optomechanical-like system and a Fabry–Perot cavity with one movable mirror: Quantum correlations from the perspectives of quantum optics. The European Physical Journal D, 73(7), 139. https://doi.org/10.1140/epjd/e2019-90448-x

Assenza, S., & Mezzenga, R. (2019). Soft condensed matter physics of foods and macronutrients. Nature Reviews Physics, 1(9), 551–566. https://doi.org/10.1038/s42254-019-0077-8

Backes, K. M., Palken, D. A., Kenany, S. A., Brubaker, B. M., Cahn, S. B., Droster, A., Hilton, G. C., Ghosh, S., Jackson, H., Lamoreaux, S. K., Leder, A. F., Lehnert, K. W., Lewis, S. M., Malnou, M., Maruyama, R. H., Rapidis, N. M., Simanovskaia, M., Singh, S., Speller, D. H., … Wang, H. (2021). A quantum enhanced search for dark matter axions. Nature, 590(7845), 238–242. https://doi.org/10.1038/s41586-021-03226-7

Biekötter, T., & Olea-Romacho, M. O. (2021). Reconciling Higgs physics and pseudo-Nambu-Goldstone dark matter in the S2HDM using a genetic algorithm. Journal of High Energy Physics, 2021(10), 215. https://doi.org/10.1007/JHEP10(2021)215

Biswas, B., Char, P., Nandi, R., & Bose, S. (2021). Towards mitigation of apparent tension between nuclear physics and astrophysical observations by improved modeling of neutron star matter. Physical Review D, 103(10), 103015. https://doi.org/10.1103/PhysRevD.103.103015

Borish, V., & Lewandowski, H. J. (2023). Implementation and goals of quantum optics experiments in undergraduate instructional labs. Physical Review Physics Education Research, 19(1), 010117. https://doi.org/10.1103/PhysRevPhysEducRes.19.010117

Carmele, A., & Reitzenstein, S. (2019). Non-Markovian features in semiconductor quantum optics: Quantifying the role of phonons in experiment and theory. Nanophotonics, 8(5), 655–683. https://doi.org/10.1515/nanoph-2018-0222

Casado, A., Guerra, S., & Plácido, J. (2019). From Stochastic Optics to theWigner Formalism: The Role of the Vacuum Field in Optical Quantum Communication Experiments. Atoms, 7(3), 76. https://doi.org/10.3390/atoms7030076

Cherkas, S. L., & Kalashnikov, V. L. (2021). Wave optics of quantum gravity for massive particles. Physica Scripta, 96(11), 115001. https://doi.org/10.1088/1402-4896/ac14e5

Cortes, C. L., Adhikari, S., Ma, X., & Gray, S. K. (2020). Accelerating quantum optics experiments with statistical learning. Applied Physics Letters, 116(18), 184003. https://doi.org/10.1063/1.5143786

Flam-Shepherd, D., Wu, T. C., Gu, X., Cervera-Lierta, A., Krenn, M., & Aspuru-Guzik, A. (2022). Learning interpretable representations of entanglement in quantum optics experiments using deep generative models. Nature Machine Intelligence, 4(6), 544–554. https://doi.org/10.1038/s42256-022-00493-5

Galvez, E. J. (2023). A Curriculum of Table-Top Quantum Optics Experiments to Teach Quantum Physics. Journal of Physics: Conference Series, 2448(1), 012006. https://doi.org/10.1088/1742-6596/2448/1/012006

Geraldi, A., Bonavena, L., Liorni, C., Mataloni, P., & Cuevas, Á. (2019). A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condensed Matter, 4(1), 14. https://doi.org/10.3390/condmat4010014

Govender, K., Stubbs, J., & Wyngaard, A. (2019). Microcontroller-based time interval and correlation measurement for quantum optics experiments. Measurement Science and Technology, 30(7), 075008. https://doi.org/10.1088/1361-6501/ab1024

Havik, T., & Westergård, E. (2020). Do Teachers Matter? Students’ Perceptions of Classroom Interactions and Student Engagement. Scandinavian Journal of Educational Research, 64(4), 488–507. https://doi.org/10.1080/00313831.2019.1577754

Jaeger, G., Simon, D., & Sergienko, A. (2019). Topological Qubits as Carriers of Quantum Information in Optics. Applied Sciences, 9(3), 575. https://doi.org/10.3390/app9030575

Jizba, P., & Lambiase, G. (2022). Tsallis cosmology and its applications in dark matter physics with focus on IceCube high-energy neutrino data. The European Physical Journal C, 82(12), 1123. https://doi.org/10.1140/epjc/s10052-022-11113-2

Khulbe, M., & Parthasarathy, H. (2022). Orbital Angular Momentum Wave Generation and Multiplexing: Experiments and Analysis Using Classical and Quantum Optics. Wireless Communications and Mobile Computing, 2022, 1–24. https://doi.org/10.1155/2022/5355854

Lupu-Gladstein, N., Yilmaz, Y. B., Arvidsson-Shukur, D. R. M., Brodutch, A., Pang, A. O. T., Steinberg, A. M., & Halpern, N. Y. (2022). Negative Quasiprobabilities Enhance Phase Estimation in Quantum-Optics Experiment. Physical Review Letters, 128(22), 220504. https://doi.org/10.1103/PhysRevLett.128.220504

Mohageg, M., Mazzarella, L., Anastopoulos, C., Gallicchio, J., Hu, B.-L., Jennewein, T., Johnson, S., Lin, S.-Y., Ling, A., Marquardt, C., Meister, M., Newell, R., Roura, A., Schleich, W. P., Schubert, C., Strekalov, D. V., Vallone, G., Villoresi, P., Wörner, L., … Kwiat, P. (2022). The deep space quantum link: Prospective fundamental physics experiments using long-baseline quantum optics. EPJ Quantum Technology, 9(1), 25. https://doi.org/10.1140/epjqt/s40507-022-00143-0

Plotnitsky, A. (2021). Reality Without Realism: Matter, Thought, and Technology in Quantum Physics. Springer International Publishing. https://doi.org/10.1007/978-3-030-84578-0

Puertas Martínez, J., Léger, S., Gheeraert, N., Dassonneville, R., Planat, L., Foroughi, F., Krupko, Y., Buisson, O., Naud, C., Hasch-Guichard, W., Florens, S., Snyman, I., & Roch, N. (2019). A tunable Josephson platform to explore many-body quantum optics in circuit-QED. Npj Quantum Information, 5(1), 19. https://doi.org/10.1038/s41534-018-0104-0

Rahmaniar, W., Ramzan, B., & Ma’arif, A. (2024). Deep learning and quantum algorithms approach to investigating the feasibility of wormholes: A review. Astronomy and Computing, 47, 100802. https://doi.org/10.1016/j.ascom.2024.100802

Rao, D. V., & Rao, L. D. (2019). Quantum Reality, Spiritual Concepts, and Modern Optics Experiments. In S. R. Bhatt (Ed.), Quantum Reality and Theory of ??nya (pp. 3–11). Springer Nature Singapore. https://doi.org/10.1007/978-981-13-1957-0_1

Semenov, A. A., & Klimov, A. B. (2021). Dual form of the phase-space classical simulation problem in quantum optics. New Journal of Physics, 23(12), 123046. https://doi.org/10.1088/1367-2630/ac40cc

Sherrott, M. C., Whitney, W. S., Jariwala, D., Biswas, S., Went, C. M., Wong, J., Rossman, G. R., & Atwater, H. A. (2019). Anisotropic Quantum Well Electro-Optics in Few-Layer Black Phosphorus. Nano Letters, 19(1), 269–276. https://doi.org/10.1021/acs.nanolett.8b03876

Taha, B. A., Addie, A. J., Haider, A. J., Chaudhary, V., Apsari, R., Kaushik, A., & Arsad, N. (2024). Exploring Trends and Opportunities in Quantum?Enhanced Advanced Photonic Illumination Technologies. Advanced Quantum Technologies, 7(3), 2300414. https://doi.org/10.1002/qute.202300414

Thomas, O. F., McCutcheon, W., & McCutcheon, D. P. S. (2021). A general framework for multimode Gaussian quantum optics and photo-detection: Application to Hong–Ou–Mandel interference with filtered heralded single photon sources. APL Photonics, 6(4), 040801. https://doi.org/10.1063/5.0044036

Virally, S., & Reulet, B. (2019). Unidimensional time-domain quantum optics. Physical Review A, 100(2), 023833. https://doi.org/10.1103/PhysRevA.100.023833

Vissani, F. (2021). What Is Matter According to Particle Physics, and Why Try to Observe Its Creation in a Lab? Universe, 7(3), 61. https://doi.org/10.3390/universe7030061

Walmsley, I. A. (2015). Quantum optics: Science and technology in a new light. Science, 348(6234), 525–530. https://doi.org/10.1126/science.aab0097

Warnick, J. L., Pfammatter, A., Champion, K., Galluzzi, T., & Spring, B. (2019). Perceptions of Health Behaviors and Mobile Health Applications in an Academically Elite College Population to Inform a Targeted Health Promotion Program. International Journal of Behavioral Medicine, 26(2), 165–174. https://doi.org/10.1007/s12529-018-09767-y

Weidlich, J., & Bastiaens, T. J. (2018). Technology Matters – The Impact of Transactional Distance on Satisfaction in Online Distance Learning. The International Review of Research in Open and Distributed Learning, 19(3). https://doi.org/10.19173/irrodl.v19i3.3417

Yin, C., Ando, H., Stone, M., Shadmany, D., Soper, A., Jaffe, M., Kumar, A., & Simon, J. (2023). A cavity loadlock apparatus for next-generation quantum optics experiments. Review of Scientific Instruments, 94(8), 083202. https://doi.org/10.1063/5.0145769

Zhang, Z., You, C., Magaña-Loaiza, O. S., Fickler, R., León-Montiel, R. D. J., Torres, J. P., Humble, T. S., Liu, S., Xia, Y., & Zhuang, Q. (2024). Entanglement-based quantum information technology: A tutorial. Advances in Optics and Photonics, 16(1), 60. https://doi.org/10.1364/AOP.497143

Authors

Amina Intes
aminaintessss@gmail.com (Primary Contact)
Uwe Barroso
Wolnough Cale
Intes, A., Barroso, U., & Cale, W. (2024). Sustainability in Quantum Optics: Future Research in Renewable Energy. Journal of Tecnologia Quantica, 1(1), 40–49. https://doi.org/10.70177/quantica.v1i1.894

Article Details