Current Quantum Optics Research: Exploring the Potential of Quantum Computing

McCarty Elliot (1), Scherschligt Oscar (2), Morse Kathryn (3)
(1) Atlantic Technological University, Ireland,
(2) Amur State University, Russian Federation,
(3) University of Warmia and Mazury, Poland

Abstract

Quantum Optics is a branch of physics that studies the interaction between light and matter on a quantum scale. Research in this field aims to understand the basic properties of light particles (photons) and matter (atoms, molecules) and utilize them in various applications, including quantum computing. The aim of this research is to explore the potential of quantum computing in the context of Quantum Optics. This includes quantum algorithm development, experimental implementation, and practical applications in quantum information processing. The research method used involves a combination of theoretical and experimental approaches. The theoretical approach involves the development and mathematical analysis of Quantum Optics models, while the experimental approach involves the design and implementation of quantum physics systems in the laboratory. The research results show significant progress in the development of quantum algorithms that can be used in modeling quantum physics systems, quantum information processing, and other applications. In addition, the experimental results also show achievements in the implementation of quantum system prototypes that can be applied in the field of quantum computing. From the research that has been conducted, it can be concluded that quantum computing has great potential in improving the understanding of quantum physical systems and in developing new technologies based on quantum principles. However, challenges such as quantum quality control and maintenance and system scalability remain the focus of future research. As such, current Quantum Optics research offers exciting and potentially paradigm-shifting insights into future information processing and computing technologies

Full text article

Generated from XML file

References

Aoudni, Y., Kalra, A., Azhagumurugan, R., Ahmed, M. A., Wanjari, A. K., Singh, B., & Bhardwaj, A. (2023). Correction to: Metaheuristics based tuning of robust PID controllers for controlling voltage and current on photonics and optics. Optical and Quantum Electronics, 55(6), 518. https://doi.org/10.1007/s11082-023-04794-w

Bitzenbauer, P. (2021). Development of a Test Instrument to Investigate Secondary School Students’ Declarative Knowledge of Quantum Optics. European Journal of Science and Mathematics Education, 9(3), 57–79. https://doi.org/10.30935/scimath/10946

Bitzenbauer, P., Veith, J. M., Girnat, B., & Meyn, J.-P. (2022). Assessing Engineering Students’ Conceptual Understanding of Introductory Quantum Optics. Physics, 4(4), 1180–1201. https://doi.org/10.3390/physics4040077

Borish, V., & Lewandowski, H. J. (2023). Implementation and goals of quantum optics experiments in undergraduate instructional labs. Physical Review Physics Education Research, 19(1), 010117. https://doi.org/10.1103/PhysRevPhysEducRes.19.010117

Cao, C., Han, Y.-H., Yi, X., Yin, P.-P., Zhang, X.-Y., Gao, Y.-P., Fan, L., & Zhang, R. (2021). Implementation of a single-photon fully quantum router with cavity QED and linear optics. Optical and Quantum Electronics, 53(1), 32. https://doi.org/10.1007/s11082-020-02701-1

Casado, A., Guerra, S., & Plácido, J. (2019). From Stochastic Optics to theWigner Formalism: The Role of the Vacuum Field in Optical Quantum Communication Experiments. Atoms, 7(3), 76. https://doi.org/10.3390/atoms7030076

Cortes, C. L., Adhikari, S., Ma, X., & Gray, S. K. (2020). Accelerating quantum optics experiments with statistical learning. Applied Physics Letters, 116(18), 184003. https://doi.org/10.1063/1.5143786

Cour, B. R. L., & Williamson, M. C. (2020). Emergence of the Born rule in quantum optics. Quantum, 4, 350. https://doi.org/10.22331/q-2020-10-26-350

Dindar, M., Ren, L., & Järvenoja, H. (2021). An experimental study on the effects of gamified cooperation and competition on English vocabulary learning. British Journal of Educational Technology, 52(1), 142–159. https://doi.org/10.1111/bjet.12977

Ding, F., & Bozhevolnyi, S. I. (2023). Advances in quantum meta-optics. Materials Today, 71, 63–72. https://doi.org/10.1016/j.mattod.2023.07.021

Galvez, E. J. (2023). A Curriculum of Table-Top Quantum Optics Experiments to Teach Quantum Physics. Journal of Physics: Conference Series, 2448(1), 012006. https://doi.org/10.1088/1742-6596/2448/1/012006

Geraldi, A., Bonavena, L., Liorni, C., Mataloni, P., & Cuevas, Á. (2019). A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condensed Matter, 4(1), 14. https://doi.org/10.3390/condmat4010014

Gruneisen, M. T., Eickhoff, M. L., Newey, S. C., Stoltenberg, K. E., Morris, J. F., Bareian, M., Harris, M. A., Oesch, D. W., Oliker, M. D., Flanagan, M. B., Kay, B. T., Schiller, J. D., & Lanning, R. N. (2021). Adaptive-Optics-Enabled Quantum Communication: A Technique for Daytime Space-To-Earth Links. Physical Review Applied, 16(1), 014067. https://doi.org/10.1103/PhysRevApplied.16.014067

Guanzon, J. J., Winnel, M. S., Lund, A. P., & Ralph, T. C. (2022). Ideal Quantum Teleamplification up to a Selected Energy Cutoff Using Linear Optics. Physical Review Letters, 128(16), 160501. https://doi.org/10.1103/PhysRevLett.128.160501

Hoskins, J. G., Kaye, J., Rachh, M., & Schotland, J. C. (2023). A fast, high-order numerical method for the simulation of single-excitation states in quantum optics. Journal of Computational Physics, 473, 111723. https://doi.org/10.1016/j.jcp.2022.111723

Lemieux, S., Giese, E., Fickler, R., Chekhova, M. V., & Boyd, R. W. (2019). A primary radiation standard based on quantum nonlinear optics. Nature Physics, 15(6), 529–532. https://doi.org/10.1038/s41567-019-0447-2

Liu, X., Yao, X., Xue, R., Wang, H., Li, H., Wang, Z., You, L., Feng, X., Liu, F., Cui, K., Huang, Y., & Zhang, W. (2020). An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution. APL Photonics, 5(7), 076104. https://doi.org/10.1063/5.0002595

Martínez Rey, N., Torras, J., Alonso-Sánchez, Á., Magrasó Santa, C., Montilla Garcia, I., & Rodríguez-Ramos, L. F. (2022). Enabling efficient quantum communications with adaptive optics. In H. Hemmati & B. S. Robinson (Eds.), Free-Space Laser Communications XXXIV (p. 26). SPIE. https://doi.org/10.1117/12.2608420

Mattos, E. P., & Vidiella-Barranco, A. (2023). Enhancing nonclassical properties of quantum states of light using linear optics. Optics Letters, 48(14), 3645. https://doi.org/10.1364/OL.494609

Ocaya, R. O., Orman, Y., Al-Sehemi, A. G., Dere, A., Al-Ghamdi, A. A., & Yakuphano?lu, F. (2023). Bias and illumination-dependent room temperature negative differential conductance in Ni-doped ZnO/p-Si Schottky photodiodes for quantum optics applications. Heliyon, 9(5), e16269. https://doi.org/10.1016/j.heliyon.2023.e16269

Pan, Z., & Djordjevic, I. B. (2021). An Overview of Geometrical Optics Restricted Quantum Key Distribution. Entropy, 23(8), 1003. https://doi.org/10.3390/e23081003

Puertas Martínez, J., Léger, S., Gheeraert, N., Dassonneville, R., Planat, L., Foroughi, F., Krupko, Y., Buisson, O., Naud, C., Hasch-Guichard, W., Florens, S., Snyman, I., & Roch, N. (2019). A tunable Josephson platform to explore many-body quantum optics in circuit-QED. Npj Quantum Information, 5(1), 19. https://doi.org/10.1038/s41534-018-0104-0

Reiche, S., Knopp, G., Pedrini, B., Prat, E., Aeppli, G., & Gerber, S. (2022). A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers. Proceedings of the National Academy of Sciences, 119(7), e2117906119. https://doi.org/10.1073/pnas.2117906119

Reitz, M., Sommer, C., & Genes, C. (2019). Langevin Approach to Quantum Optics with Molecules. Physical Review Letters, 122(20), 203602. https://doi.org/10.1103/PhysRevLett.122.203602

Sartison, M., Weber, K., Thiele, S., Bremer, L., Fischbach, S., Herzog, T., Kolatschek, S., Jetter, M., Reitzenstein, S., Herkommer, A., Michler, P., Portalupi, S. L., & Giessen, H. (2021). 3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre. Light: Advanced Manufacturing, 2(2), 103. https://doi.org/10.37188/lam.2021.006

Semenov, A. A., & Klimov, A. B. (2021). Dual form of the phase-space classical simulation problem in quantum optics. New Journal of Physics, 23(12), 123046. https://doi.org/10.1088/1367-2630/ac40cc

Shaker, L. M., Al-Amiery, A., Isahak, W. N. R. W., & Al-Azzawi, W. K. (2023). Advancements in Quantum Optics: Harnessing the Power of Photons for Next-Generation Technologies. Journal of Optics. https://doi.org/10.1007/s12596-023-01320-9

Sherrott, M. C., Whitney, W. S., Jariwala, D., Biswas, S., Went, C. M., Wong, J., Rossman, G. R., & Atwater, H. A. (2019). Anisotropic Quantum Well Electro-Optics in Few-Layer Black Phosphorus. Nano Letters, 19(1), 269–276. https://doi.org/10.1021/acs.nanolett.8b03876

Stejskal, A., Procházka, V., Dudka, M., Vrba, V., Ko?iš?ák, J., Šretrová, P., & Novák, P. (2023). A dual Mössbauer spectrometer for material research, coincidence experiments and nuclear quantum optics. Measurement, 215, 112850. https://doi.org/10.1016/j.measurement.2023.112850

Tang, L., Tang, J., & Xia, K. (2022). Chiral Quantum Optics and Optical Nonreciprocity Based on Susceptibility?Momentum Locking. Advanced Quantum Technologies, 5(8), 2200014. https://doi.org/10.1002/qute.202200014

Thomas, O. F., McCutcheon, W., & McCutcheon, D. P. S. (2021). A general framework for multimode Gaussian quantum optics and photo-detection: Application to Hong–Ou–Mandel interference with filtered heralded single photon sources. APL Photonics, 6(4), 040801. https://doi.org/10.1063/5.0044036

Türschmann, P., Le Jeannic, H., Simonsen, S. F., Haakh, H. R., Götzinger, S., Sandoghdar, V., Lodahl, P., & Rotenberg, N. (2019). Coherent nonlinear optics of quantum emitters in nanophotonic waveguides. Nanophotonics, 8(10), 1641–1657. https://doi.org/10.1515/nanoph-2019-0126

Weinbub, J., & Kosik, R. (2022). Computational perspective on recent advances in quantum electronics: From electron quantum optics to nanoelectronic devices and systems. Journal of Physics: Condensed Matter, 34(16), 163001. https://doi.org/10.1088/1361-648X/ac49c6

Wellnitz, D., Pupillo, G., & Schachenmayer, J. (2021). A quantum optics approach to photoinduced electron transfer in cavities. The Journal of Chemical Physics, 154(5), 054104. https://doi.org/10.1063/5.0037412

Yamamoto, Y., Leleu, T., Ganguli, S., & Mabuchi, H. (2020). Coherent Ising machines—Quantum optics and neural network Perspectives. Applied Physics Letters, 117(16), 160501. https://doi.org/10.1063/5.0016140

Yanagimoto, R., Ng, E., Wright, L. G., Onodera, T., & Mabuchi, H. (2021). Efficient simulation of ultrafast quantum nonlinear optics with matrix product states. Optica, 8(10), 1306. https://doi.org/10.1364/OPTICA.423044

Authors

McCarty Elliot
mccartyyy@gail.com (Primary Contact)
Scherschligt Oscar
Morse Kathryn
Elliot, M., Oscar, S., & Kathryn, M. (2024). Current Quantum Optics Research: Exploring the Potential of Quantum Computing. Journal of Tecnologia Quantica, 1(1), 30–39. https://doi.org/10.70177/quantica.v1i1.874

Article Details