Quantum Entanglement in Multi-Particle Systems

Maxime Lambert (1), Olivier Lefevre (2), Dimitar Hristov (3)
(1) UCLouvain, Belgium,
(2) University of Ghent, Belgium,
(3) University of Sofia, Bulgaria

Abstract

The background of this research focuses on the phenomenon of quantum entanglement in multi-particle systems involving photons and atoms. Although much research has been done on entanglement in two-particle systems, challenges arise when the system is expanded to include more particles. This study aims to explore how entanglement is maintained in multi-particle systems and to understand the differences between photons and atoms in this context. The method used is an experiment that involves measuring entanglement in a system of photons and atoms that are separated at a certain distance. The results showed that photons can maintain entanglement over very long distances (up to 1 kilometer), while atoms show a decrease in entanglement levels over longer distances, but can still be used in quantum computing applications at shorter distances. The study concluded that photons are more stable in maintaining entanglement over long distances, while atoms are more suitable for quantum computing applications in small systems. Further research is needed to address the limitations related to the stability of entanglement over longer distances and to develop applications in larger multi-particle systems.


 

Full text article

Generated from XML file

References

Almheiri, A., Engelhardt, N., Marolf, D., & Maxfield, H. (2019). The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. Journal of High Energy Physics, 2019(12), 63. https://doi.org/10.1007/JHEP12(2019)063

Bertini, B., Kos, P., & Prosen, T. (2019). Entanglement Spreading in a Minimal Model of Maximal Many-Body Quantum Chaos. Physical Review X, 9(2), 021033. https://doi.org/10.1103/PhysRevX.9.021033

Bienfait, A., Satzinger, K. J., Zhong, Y. P., Chang, H.-S., Chou, M.-H., Conner, C. R., Dumur, É., Grebel, J., Peairs, G. A., Povey, R. G., & Cleland, A. N. (2019). Phonon-mediated quantum state transfer and remote qubit entanglement. Science, 364(6438), 368–371. https://doi.org/10.1126/science.aaw8415

Bonen, S., Alakusu, U., Duan, Y., Gong, M. J., Dadash, M. S., Lucci, L., Daughton, D. R., Adam, G. C., Iordanescu, S., Pasteanu, M., Giangu, I., Jia, H., Gutierrez, L. E., Chen, W. T., Messaoudi, N., Harame, D., Muller, A., Mansour, R. R., Asbeck, P., & Voinigescu, S. P. (2018). Cryogenic Characterization of 22nm FDSOI CMOS Technology for Quantum Computing ICs. IEEE Electron Device Letters, 1–1. https://doi.org/10.1109/LED.2018.2880303

Cacciapuoti, A. S., Caleffi, M., Van Meter, R., & Hanzo, L. (2020). When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet. IEEE Transactions on Communications, 68(6), 3808–3833. https://doi.org/10.1109/TCOMM.2020.2978071

Chen, H. Z., Myers, R. C., Neuenfeld, D., Reyes, I. A., & Sandor, J. (2020). Quantum extremal islands made easy. Part I. Entanglement on the brane. Journal of High Energy Physics, 2020(10), 166. https://doi.org/10.1007/JHEP10(2020)166

Corcoles, A. D., Kandala, A., Javadi-Abhari, A., McClure, D. T., Cross, A. W., Temme, K., Nation, P. D., Steffen, M., & Gambetta, J. M. (2020). Challenges and Opportunities of Near-Term Quantum Computing Systems. Proceedings of the IEEE, 108(8), 1338–1352. https://doi.org/10.1109/JPROC.2019.2954005

Gong, M., Chen, M.-C., Zheng, Y., Wang, S., Zha, C., Deng, H., Yan, Z., Rong, H., Wu, Y., Li, S., Chen, F., Zhao, Y., Liang, F., Lin, J., Xu, Y., Guo, C., Sun, L., Castellano, A. D., Wang, H., … Pan, J.-W. (2019). Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. Physical Review Letters, 122(11), 110501. https://doi.org/10.1103/PhysRevLett.122.110501

Graham, T. M., Song, Y., Scott, J., Poole, C., Phuttitarn, L., Jooya, K., Eichler, P., Jiang, X., Marra, A., Grinkemeyer, B., Kwon, M., Ebert, M., Cherek, J., Lichtman, M. T., Gillette, M., Gilbert, J., Bowman, D., Ballance, T., Campbell, C., … Saffman, M. (2022). Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 604(7906), 457–462. https://doi.org/10.1038/s41586-022-04603-6

Ho, W. W., Choi, S., Pichler, H., & Lukin, M. D. (2019). Periodic Orbits, Entanglement, and Quantum Many-Body Scars in Constrained Models: Matrix Product State Approach. Physical Review Letters, 122(4), 040603. https://doi.org/10.1103/PhysRevLett.122.040603

Hu, X.-M., Huang, C.-X., Sheng, Y.-B., Zhou, L., Liu, B.-H., Guo, Y., Zhang, C., Xing, W.-B., Huang, Y.-F., Li, C.-F., & Guo, G.-C. (2021). Long-Distance Entanglement Purification for Quantum Communication. Physical Review Letters, 126(1), 010503. https://doi.org/10.1103/PhysRevLett.126.010503

Iadecola, T., & Schecter, M. (2020). Quantum many-body scar states with emergent kinetic constraints and finite-entanglement revivals. Physical Review B, 101(2), 024306. https://doi.org/10.1103/PhysRevB.101.024306

Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A., & De Riedmatten, H. (2021). Telecom-heralded entanglement between multimode solid-state quantum memories. Nature, 594(7861), 37–40. https://doi.org/10.1038/s41586-021-03481-8

Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S., & Andersen, U. L. (2021). Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nature Physics, 17(9), 1018–1023. https://doi.org/10.1038/s41567-021-01296-y

Lavasani, A., Alavirad, Y., & Barkeshli, M. (2021a). Measurement-induced topological entanglement transitions in symmetric random quantum circuits. Nature Physics, 17(3), 342–347. https://doi.org/10.1038/s41567-020-01112-z

Lavasani, A., Alavirad, Y., & Barkeshli, M. (2021b). Measurement-induced topological entanglement transitions in symmetric random quantum circuits. Nature Physics, 17(3), 342–347. https://doi.org/10.1038/s41567-020-01112-z

Levine, Y., Sharir, O., Cohen, N., & Shashua, A. (2019). Quantum Entanglement in Deep Learning Architectures. Physical Review Letters, 122(6), 065301. https://doi.org/10.1103/PhysRevLett.122.065301

Li, Y., Chen, X., & Fisher, M. P. A. (2019). Measurement-driven entanglement transition in hybrid quantum circuits. Physical Review B, 100(13), 134306. https://doi.org/10.1103/PhysRevB.100.134306

Liu, X., Hu, J., Li, Z.-F., Li, X., Li, P.-Y., Liang, P.-J., Zhou, Z.-Q., Li, C.-F., & Guo, G.-C. (2021). Heralded entanglement distribution between two absorptive quantum memories. Nature, 594(7861), 41–45. https://doi.org/10.1038/s41586-021-03505-3

Marshman, R. J., Mazumdar, A., & Bose, S. (2020). Locality and entanglement in table-top testing of the quantum nature of linearized gravity. Physical Review A, 101(5), 052110. https://doi.org/10.1103/PhysRevA.101.052110

Nahum, A., Roy, S., Skinner, B., & Ruhman, J. (2021). Measurement and Entanglement Phase Transitions in All-To-All Quantum Circuits, on Quantum Trees, and in Landau-Ginsburg Theory. PRX Quantum, 2(1), 010352. https://doi.org/10.1103/PRXQuantum.2.010352

Pant, M., Krovi, H., Towsley, D., Tassiulas, L., Jiang, L., Basu, P., Englund, D., & Guha, S. (2019). Routing entanglement in the quantum internet. Npj Quantum Information, 5(1), 25. https://doi.org/10.1038/s41534-019-0139-x

Stephenson, L. J., Nadlinger, D. P., Nichol, B. C., An, S., Drmota, P., Ballance, T. G., Thirumalai, K., Goodwin, J. F., Lucas, D. M., & Ballance, C. J. (2020). High-Rate, High-Fidelity Entanglement of Qubits Across an Elementary Quantum Network. Physical Review Letters, 124(11), 110501. https://doi.org/10.1103/PhysRevLett.124.110501

Turkeshi, X., Biella, A., Fazio, R., Dalmonte, M., & Schiró, M. (2021). Measurement-induced entanglement transitions in the quantum Ising chain: From infinite to zero clicks. Physical Review B, 103(22), 224210. https://doi.org/10.1103/PhysRevB.103.224210

Yin, J., Li, Y.-H., Liao, S.-K., Yang, M., Cao, Y., Zhang, L., Ren, J.-G., Cai, W.-Q., Liu, W.-Y., Li, S.-L., Shu, R., Huang, Y.-M., Deng, L., Li, L., Zhang, Q., Liu, N.-L., Chen, Y.-A., Lu, C.-Y., Wang, X.-B., … Pan, J.-W. (2020). Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 582(7813), 501–505. https://doi.org/10.1038/s41586-020-2401-y

Yu, P., Cheuk, L. W., Kozyryev, I., & Doyle, J. M. (2019). A scalable quantum computing platform using symmetric-top molecules. New Journal of Physics, 21(9), 093049. https://doi.org/10.1088/1367-2630/ab428d

Yu, Y., Ma, F., Luo, X.-Y., Jing, B., Sun, P.-F., Fang, R.-Z., Yang, C.-W., Liu, H., Zheng, M.-Y., Xie, X.-P., Zhang, W.-J., You, L.-X., Wang, Z., Chen, T.-Y., Zhang, Q., Bao, X.-H., & Pan, J.-W. (2020). Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 578(7794), 240–245. https://doi.org/10.1038/s41586-020-1976-7

Zhang, Z., Scully, M. O., & Agarwal, G. S. (2019). Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium. Physical Review Research, 1(2), 023021. https://doi.org/10.1103/PhysRevResearch.1.023021

Zhong, Y., Chang, H.-S., Bienfait, A., Dumur, É., Chou, M.-H., Conner, C. R., Grebel, J., Povey, R. G., Yan, H., Schuster, D. I., & Cleland, A. N. (2021). Deterministic multi-qubit entanglement in a quantum network. Nature, 590(7847), 571–575. https://doi.org/10.1038/s41586-021-03288-7

Authors

Maxime Lambert
maximelambert@gmail.com (Primary Contact)
Olivier Lefevre
Dimitar Hristov
Lambert, M., Lefevre, O., & Hristov, D. (2025). Quantum Entanglement in Multi-Particle Systems. Journal of Tecnologia Quantica, 2(2), 74–85. https://doi.org/10.70177/quantica.v2i2.1961

Article Details