History of Computer Networks

Hasanuddin Sirait (1)
(1) Akademi Manajemen Informatika dan Komputer parbina Nusantara, Indonesia

Abstract

With has each other connected so between computer can interact And send data. Data transmission is carried out To use spread information And data processing becomes something information . So that man as user information can take advantage of it in necessary jobs? speed And data accuracy and accuracy information. Various network models computer seen of type and benefits network the such as one to one, one to anywhere , many to one and many to many. Development system network computer This started since 1960s by? company electronics famous like ARPANET. Development network computer the will explained on discussion following .

Full text article

Generated from XML file

References

Bitzenbauer, P., Veith, J. M., Girnat, B., & Meyn, J.-P. (2022). Assessing Engineering Students’ Conceptual Understanding of Introductory Quantum Optics. Physics, 4(4), 1180–1201. https://doi.org/10.3390/physics4040077

Burenkov, I. A., Jabir, M. V., Battou, A., & Polyakov, S. V. (2020). Time-Resolving Quantum Measurement Enables Energy-Efficient, Large-Alphabet Communication. PRX Quantum, 1(1), 010308. https://doi.org/10.1103/PRXQuantum.1.010308

Calderaro, L., Agnesi, C., Dequal, D., Vedovato, F., Schiavon, M., Santamato, A., Luceri, V., Bianco, G., Vallone, G., & Villoresi, P. (2018). Towards quantum communication from global navigation satellite system. Quantum Science and Technology, 4(1), 015012. https://doi.org/10.1088/2058-9565/aaefd4

Casado, A., Guerra, S., & Plácido, J. (2019). From Stochastic Optics to theWigner Formalism: The Role of the Vacuum Field in Optical Quantum Communication Experiments. Atoms, 7(3), 76. https://doi.org/10.3390/atoms7030076

Cavaliere, F., Prati, E., Poti, L., Muhammad, I., & Catuogno, T. (2020). Secure Quantum Communication Technologies and Systems: From Labs to Markets. Quantum Reports, 2(1), 80–106. https://doi.org/10.3390/quantum2010007

Chan, K. S., & Chau, H. F. (2023). Reducing the impact of adaptive optics lag on optical and quantum communications rates from rapidly moving sources. AIP Advances, 13(5), 055201. https://doi.org/10.1063/5.0149695

Di Candia, R., Yi?itler, H., Paraoanu, G. S., & Jäntti, R. (2021). Two-Way Covert Quantum Communication in the Microwave Regime. PRX Quantum, 2(2), 020316. https://doi.org/10.1103/PRXQuantum.2.020316

Galvez, E. J. (2023). A Curriculum of Table-Top Quantum Optics Experiments to Teach Quantum Physics. Journal of Physics: Conference Series, 2448(1), 012006. https://doi.org/10.1088/1742-6596/2448/1/012006

Geraldi, A., Bonavena, L., Liorni, C., Mataloni, P., & Cuevas, Á. (2019). A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condensed Matter, 4(1), 14. https://doi.org/10.3390/condmat4010014

Gruneisen, M. T., Eickhoff, M. L., Newey, S. C., Stoltenberg, K. E., Morris, J. F., Bareian, M., Harris, M. A., Oesch, D. W., Oliker, M. D., Flanagan, M. B., Kay, B. T., Schiller, J. D., & Lanning, R. N. (2021). Adaptive-Optics-Enabled Quantum Communication: A Technique for Daytime Space-To-Earth Links. Physical Review Applied, 16(1), 014067. https://doi.org/10.1103/PhysRevApplied.16.014067

Hoskins, J. G., Kaye, J., Rachh, M., & Schotland, J. C. (2023). A fast, high-order numerical method for the simulation of single-excitation states in quantum optics. Journal of Computational Physics, 473, 111723. https://doi.org/10.1016/j.jcp.2022.111723

Hu, C.-Q., Yan, Z.-Q., Gao, J., Jiao, Z.-Q., Li, Z.-M., Shen, W.-G., Chen, Y., Ren, R.-J., Qiao, L.-F., Yang, A.-L., Tang, H., & Jin, X.-M. (2019). Transmission of photonic polarization states through 55-m water: Towards air-to-sea quantum communication. Photonics Research, 7(8), A40. https://doi.org/10.1364/PRJ.7.000A40

Kouadou, T., Diaz, D., & Kwiat, P. (2023). Portable integrated quantum optics for quantum communication. In D. F. Figer & M. Reimer (Eds.), Photonics for Quantum 2023 (p. 55). SPIE. https://doi.org/10.1117/12.2680341

Li, X., Tong, Z., Lyu, W., Chen, X., Yang, X., Zhang, Y., Liu, S., Dai, Y., Zhang, Z., Guo, C., & Xu, J. (2022). Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Optics Express, 30(2), 1709. https://doi.org/10.1364/OE.448213

Liu, C., Pang, K., Zhao, Z., Liao, P., Zhang, R., Song, H., Cao, Y., Du, J., Li, L., Song, H., Ren, Y., Xie, G., Zhao, Y., Zhao, J., Rafsanjani, S. M. H., Willner, A. N., Shapiro, J. H., Boyd, R. W., Tur, M., & Willner, A. E. (2019). Single-End Adaptive Optics Compensation for Emulated Turbulence in a Bi-Directional 10-Mbit/s per Channel Free-Space Quantum Communication Link Using Orbital-Angular-Momentum Encoding. Research, 2019, 2019/8326701. https://doi.org/10.34133/2019/8326701

Liu, R., Rozenman, G. G., Kundu, N. K., Chandra, D., & De, D. (2022). Towards the industrialisation of quantum key distribution in communication networks: A short survey. IET Quantum Communication, 3(3), 151–163. https://doi.org/10.1049/qtc2.12044

Manzalini, A. (2020). Quantum Communications in Future Networks and Services. Quantum Reports, 2(1), 221–232. https://doi.org/10.3390/quantum2010014

Martínez Rey, N., Torras, J., Alonso-Sánchez, Á., Magrasó Santa, C., Montilla Garcia, I., & Rodríguez-Ramos, L. F. (2022). Enabling efficient quantum communications with adaptive optics. In H. Hemmati & B. S. Robinson (Eds.), Free-Space Laser Communications XXXIV (p. 26). SPIE. https://doi.org/10.1117/12.2608420

Paul, S., & Scheible, P. (2020). Towards Post-Quantum Security for Cyber-Physical Systems: Integrating PQC into Industrial M2M Communication. In L. Chen, N. Li, K. Liang, & S. Schneider (Eds.), Computer Security – ESORICS 2020 (Vol. 12309, pp. 295–316). Springer International Publishing. https://doi.org/10.1007/978-3-030-59013-0_15

Reiche, S., Knopp, G., Pedrini, B., Prat, E., Aeppli, G., & Gerber, S. (2022). A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers. Proceedings of the National Academy of Sciences, 119(7), e2117906119. https://doi.org/10.1073/pnas.2117906119

Seguel, A. I., Anguita, J. A., & Pirela, C. S. (2023). Reduction of photon-losses caused by turbulence using spatial diversity in free-space optics quantum communications. In D. T. Wayne, J. A. Anguita, & J. P. Bos (Eds.), Laser Communication and Propagation through the Atmosphere and Oceans XII (p. 26). SPIE. https://doi.org/10.1117/12.2677129

Singh, S. K., Azzaoui, A. E., Salim, M. M., & Park, J. H. (2020). Quantum Communication Technology for Future ICT - Review. Journal of Information Processing Systems, 16(6), 1459–1478. https://doi.org/10.3745/JIPS.03.0154

Stejskal, A., Procházka, V., Dudka, M., Vrba, V., Ko?iš?ák, J., Šretrová, P., & Novák, P. (2023). A dual Mössbauer spectrometer for material research, coincidence experiments and nuclear quantum optics. Measurement, 215, 112850. https://doi.org/10.1016/j.measurement.2023.112850

Sun, Y., Yan, L., Chang, Y., Zhang, S., Shao, T., & Zhang, Y. (2019). Two semi-quantum secure direct communication protocols based on Bell states. Modern Physics Letters A, 34(01), 1950004. https://doi.org/10.1142/S0217732319500044

Tao, Z., Chang, Y., Zhang, S., Dai, J., & Li, X. (2019). Two Semi-Quantum Direct Communication Protocols with Mutual Authentication Based on Bell States. International Journal of Theoretical Physics, 58(9), 2986–2993. https://doi.org/10.1007/s10773-019-04178-5

Thomas, O. F., McCutcheon, W., & McCutcheon, D. P. S. (2021). A general framework for multimode Gaussian quantum optics and photo-detection: Application to Hong–Ou–Mandel interference with filtered heralded single photon sources. APL Photonics, 6(4), 040801. https://doi.org/10.1063/5.0044036

Xu, L., Yuan, S., Zeng, H., & Song, J. (2019). A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes. Materials Today Nano, 6, 100036. https://doi.org/10.1016/j.mtnano.2019.100036

Yamamoto, Y., Leleu, T., Ganguli, S., & Mabuchi, H. (2020). Coherent Ising machines—Quantum optics and neural network Perspectives. Applied Physics Letters, 117(16), 160501. https://doi.org/10.1063/5.0016140

Yanagimoto, R., Ng, E., Wright, L. G., Onodera, T., & Mabuchi, H. (2021). Efficient simulation of ultrafast quantum nonlinear optics with matrix product states. Optica, 8(10), 1306. https://doi.org/10.1364/OPTICA.423044

Yang, Y.-G., Liu, X.-X., Gao, S., Zhou, Y.-H., Shi, W.-M., Li, J., & Li, D. (2021). Towards practical anonymous quantum communication: A measurement-device-independent approach. Physical Review A, 104(5), 052415. https://doi.org/10.1103/PhysRevA.104.052415

Yu, B., Liang, S., Zhang, F., Li, Z., Liu, B., & Ding, X. (2021). Water-stable CsPbBr 3 perovskite quantum-dot luminous fibers fabricated by centrifugal spinning for dual white light illumination and communication. Photonics Research, 9(8), 1559. https://doi.org/10.1364/PRJ.427066

Zhao, J., Zhou, Y., Braverman, B., Liu, C., Pang, K., Steinhoff, N., Tyler, G., Willner, A., & Boyd, R. (2020). Investigate the performance of real-time adaptive optics correction in a turbulent high-dimensional quantum communication channel. In H. Hemmati & D. M. Boroson (Eds.), Free-Space Laser Communications XXXII (p. 48). SPIE. https://doi.org/10.1117/12.2547186

Zhou, Y., Mirhosseini, M., Oliver, S., Zhao, J., Rafsanjani, S. M. H., Lavery, M. P. J., Willner, A. E., & Boyd, R. W. (2019). Using all transverse degrees of freedom in quantum communications based on a generic mode sorter. Optics Express, 27(7), 10383. https://doi.org/10.1364/OE.27.010383

Authors

Hasanuddin Sirait
hsirait2020j@gmail.com (Primary Contact)
Sirait, H. (2024). History of Computer Networks. Journal of Tecnologia Quantica, 1(3), 117–134. https://doi.org/10.70177/quantica.v1i3.1447

Article Details