The Role of Artificial Intelligence in Immigration Law Enforcement: Balancing Efficiency, Transparency, and Ethical Accountability
Downloads
Background. The integration of Artificial Intelligence (AI) in immigration law enforcement has significantly improved efficiency in areas such as fraud detection, border security, and visa application assessments. However, the implementation of AI raises critical concerns related to transparency, fairness, and ethical accountability. The "black box" nature of AI systems often obscures the reasoning behind decisions, posing risks to the rights of migrants, especially refugees and asylum seekers. Furthermore, the increased use of biometric data for security purposes heightens privacy concerns and potential misuse.
Purpose. This study aims to analyze the role of AI in immigration law enforcement, focusing on its benefits, limitations, and ethical challenges. It seeks to provide recommendations for regulatory frameworks that ensure a balance between operational efficiency and the protection of human rights.
Method. The research adopts a qualitative approach, combining a review of scholarly articles and case studies from journals such as Comparative Migration Studies and AI & Society. Key themes include transparency, fairness, privacy, and accountability.
Results. AI significantly enhances operational efficiency but remains vulnerable to biases and errors that can disproportionately affect vulnerable populations. Human oversight is critical to ensuring ethical decision-making and maintaining accountability.
Conclusion. The integration of AI in immigration law must be guided by transparent, fair, and ethical regulatory frameworks. Emphasizing human oversight ensures that moral responsibility remains with human actors rather than AI systems.
Adir, O., Poley, M., Chen, G., Froim, S., Krinsky, N., Shklover, J., Shainsky?Roitman, J., Lammers, T., & Schroeder, A. (2020). Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Advanced Materials, 32(13), 1901989. https://doi.org/10.1002/adma.201901989
Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database, 2020, baaa010. https://doi.org/10.1093/database/baaa010
Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548
Ayoub Shaikh, T., Rasool, T., & Rasheed Lone, F. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198, 107119. https://doi.org/10.1016/j.compag.2022.107119
Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440
Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare (pp. 25–60). Elsevier. https://doi.org/10.1016/B978-0-12-818438-7.00002-2
Briganti, G., & Le Moine, O. (2020). Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine, 7, 27. https://doi.org/10.3389/fmed.2020.00027
Chen, X., Xie, H., Zou, D., & Hwang, G.-J. (2020). Application and theory gaps during the rise of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100002. https://doi.org/10.1016/j.caeai.2020.100002
Collins, G. S., Dhiman, P., Andaur Navarro, C. L., Ma, J., Hooft, L., Reitsma, J. B., Logullo, P., Beam, A. L., Peng, L., Van Calster, B., Van Smeden, M., Riley, R. D., & Moons, K. G. (2021). Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open, 11(7), e048008. https://doi.org/10.1136/bmjopen-2020-048008
Dong, K., Peng, X., & Wang, Z. L. (2020). Fiber/Fabric?Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 32(5), 1902549. https://doi.org/10.1002/adma.201902549
Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare (pp. 295–336). Elsevier. https://doi.org/10.1016/B978-0-12-818438-7.00012-5
Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., & Amira, A. (2021). Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy, 287, 116601. https://doi.org/10.1016/j.apenergy.2021.116601
Huang, S., Yang, J., Fong, S., & Zhao, Q. (2020). Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Letters, 471, 61–71. https://doi.org/10.1016/j.canlet.2019.12.007
Huynh-The, T., Pham, Q.-V., Pham, X.-Q., Nguyen, T. T., Han, Z., & Kim, D.-S. (2023). Artificial intelligence for the metaverse: A survey. Engineering Applications of Artificial Intelligence, 117, 105581. https://doi.org/10.1016/j.engappai.2022.105581
Hwang, G.-J., & Chien, S.-Y. (2022). Definition, roles, and potential research issues of the metaverse in education: An artificial intelligence perspective. Computers and Education: Artificial Intelligence, 3, 100082. https://doi.org/10.1016/j.caeai.2022.100082
Hwang, G.-J., Xie, H., Wah, B. W., & Gaševi?, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001
Jacovi, A., Marasovi?, A., Miller, T., & Goldberg, Y. (2021). Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 624–635. https://doi.org/10.1145/3442188.3445923
Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 70, 15–22. https://doi.org/10.1016/j.copbio.2020.09.003
Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003
Kaur, D., Uslu, S., Rittichier, K. J., & Durresi, A. (2023). Trustworthy Artificial Intelligence: A Review. ACM Computing Surveys, 55(2), 1–38. https://doi.org/10.1145/3491209
Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059. https://doi.org/10.1016/j.chaos.2020.110059
Loh, H. W., Ooi, C. P., Seoni, S., Barua, P. D., Molinari, F., & Acharya, U. R. (2022). Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Computer Methods and Programs in Biomedicine, 226, 107161. https://doi.org/10.1016/j.cmpb.2022.107161
Maia, E. H. B., Assis, L. C., De Oliveira, T. A., Da Silva, A. M., & Taranto, A. G. (2020). Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Frontiers in Chemistry, 8, 343. https://doi.org/10.3389/fchem.2020.00343
Manickam, P., Mariappan, S. A., Murugesan, S. M., Hansda, S., Kaushik, A., Shinde, R., & Thipperudraswamy, S. P. (2022). Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors, 12(8), 562. https://doi.org/10.3390/bios12080562
Naik, N., Hameed, B. M. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., Aggarwal, K., Ibrahim, S., Patil, V., Smriti, K., Shetty, S., Rai, B. P., Chlosta, P., & Somani, B. K. (2022). Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Frontiers in Surgery, 9, 862322. https://doi.org/10.3389/fsurg.2022.862322
Niu, H., Li, H., Gao, S., Li, Y., Wei, X., Chen, Y., Yue, W., Zhou, W., & Shen, G. (2022). Perception?to?Cognition Tactile Sensing Based on Artificial?Intelligence?Motivated Human Full?Skin Bionic Electronic Skin. Advanced Materials, 34(31), 2202622. https://doi.org/10.1002/adma.202202622
Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction, 122, 103517. https://doi.org/10.1016/j.autcon.2020.103517
Pelau, C., Dabija, D.-C., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior, 122, 106855. https://doi.org/10.1016/j.chb.2021.106855
Rong, G., Mendez, A., Bou Assi, E., Zhao, B., & Sawan, M. (2020). Artificial Intelligence in Healthcare: Review and Prediction Case Studies. Engineering, 6(3), 291–301. https://doi.org/10.1016/j.eng.2019.08.015
Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. https://doi.org/10.1016/j.cogr.2023.04.001
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://doi.org/10.1016/j.aiia.2020.04.002
Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of Artificial Intelligence and Machine learning in smart cities. Computer Communications, 154, 313–323. https://doi.org/10.1016/j.comcom.2020.02.069
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337–339. https://doi.org/10.1016/j.dsx.2020.04.012
Xiang, X., Li, Q., Khan, S., & Khalaf, O. I. (2021). Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environmental Impact Assessment Review, 86, 106515. https://doi.org/10.1016/j.eiar.2020.106515
Yigitcanlar, T., Desouza, K., Butler, L., & Roozkhosh, F. (2020). Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies, 13(6), 1473. https://doi.org/10.3390/en13061473
Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., Liu, J.-B., Yuan, J., & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021(1), 8812542. https://doi.org/10.1155/2021/8812542
Zhu, H. (2020). Big Data and Artificial Intelligence Modeling for Drug Discovery. Annual Review of Pharmacology and Toxicology, 60(1), 573–589. https://doi.org/10.1146/annurev-pharmtox-010919-023324
Copyright (c) 2024 Muhammad Arief Hamdi, Bobby Briando, Faisal Santiago

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.