Legal Protection Efforts and Policies to Combat Deepfake Porn Crimes with Artificial Intelligence (AI) in Indonesia
Downloads
Background. The rapid development of artificial intelligence (AI)-based technologies, including deepfake, has introduced new challenges to the legal system. Deepfake porn, which manipulates digital content to create fake explicit materials, threatens privacy, dignity, and personal reputation. In Indonesia, existing laws related to pornography and electronic information are insufficient to address these crimes effectively, leaving victims vulnerable.
Purpose. This study aims to analyze the legal gaps in addressing AI-based cybercrimes, especially deepfake porn, and propose legal policies to provide better protection for individuals while balancing technological innovation.
Method. A qualitative approach was employed, combining doctrinal legal research with case analysis. Legal frameworks, including Indonesia’s Law on Pornography and the Electronic Information and Transactions (ITE) Law, were reviewed alongside global legal precedents on AI misuse.
Results. The study reveals that existing laws are outdated in handling AI-driven crimes. There is an urgent need for specific regulations addressing the misuse of AI, particularly in creating and distributing deepfake content. Effective enforcement mechanisms and victim support systems are also lacking.
Conclusion. To combat deepfake porn crimes, Indonesia must establish specific legal frameworks regulating AI misuse and ensuring accountability. Clear definitions, strict penalties, and victim protection measures should be integral to these policies.
Adir, O., Poley, M., Chen, G., Froim, S., Krinsky, N., Shklover, J., Shainsky?Roitman, J., Lammers, T., & Schroeder, A. (2020). Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Advanced Materials, 32(13), 1901989. https://doi.org/10.1002/adma.201901989
Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database, 2020, baaa010. https://doi.org/10.1093/database/baaa010
Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548
Ayoub Shaikh, T., Rasool, T., & Rasheed Lone, F. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198, 107119. https://doi.org/10.1016/j.compag.2022.107119
Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440
Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare (pp. 25–60). Elsevier. https://doi.org/10.1016/B978-0-12-818438-7.00002-2
Briganti, G., & Le Moine, O. (2020). Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine, 7, 27. https://doi.org/10.3389/fmed.2020.00027
Chen, X., Xie, H., Zou, D., & Hwang, G.-J. (2020). Application and theory gaps during the rise of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100002. https://doi.org/10.1016/j.caeai.2020.100002
Collins, G. S., Dhiman, P., Andaur Navarro, C. L., Ma, J., Hooft, L., Reitsma, J. B., Logullo, P., Beam, A. L., Peng, L., Van Calster, B., Van Smeden, M., Riley, R. D., & Moons, K. G. (2021). Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open, 11(7), e048008. https://doi.org/10.1136/bmjopen-2020-048008
Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare (pp. 295–336). Elsevier. https://doi.org/10.1016/B978-0-12-818438-7.00012-5
Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., & Amira, A. (2021). Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy, 287, 116601. https://doi.org/10.1016/j.apenergy.2021.116601
Huang, S., Yang, J., Fong, S., & Zhao, Q. (2020). Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Letters, 471, 61–71. https://doi.org/10.1016/j.canlet.2019.12.007
Huynh-The, T., Pham, Q.-V., Pham, X.-Q., Nguyen, T. T., Han, Z., & Kim, D.-S. (2023). Artificial intelligence for the metaverse: A survey. Engineering Applications of Artificial Intelligence, 117, 105581. https://doi.org/10.1016/j.engappai.2022.105581
Hwang, G.-J., & Chien, S.-Y. (2022). Definition, roles, and potential research issues of the metaverse in education: An artificial intelligence perspective. Computers and Education: Artificial Intelligence, 3, 100082. https://doi.org/10.1016/j.caeai.2022.100082
Hwang, G.-J., Xie, H., Wah, B. W., & Gaševi?, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001
Jacovi, A., Marasovi?, A., Miller, T., & Goldberg, Y. (2021). Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 624–635. https://doi.org/10.1145/3442188.3445923
Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 70, 15–22. https://doi.org/10.1016/j.copbio.2020.09.003
Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003
Kaur, D., Uslu, S., Rittichier, K. J., & Durresi, A. (2023). Trustworthy Artificial Intelligence: A Review. ACM Computing Surveys, 55(2), 1–38. https://doi.org/10.1145/3491209
Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059. https://doi.org/10.1016/j.chaos.2020.110059
Loh, H. W., Ooi, C. P., Seoni, S., Barua, P. D., Molinari, F., & Acharya, U. R. (2022). Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Computer Methods and Programs in Biomedicine, 226, 107161. https://doi.org/10.1016/j.cmpb.2022.107161
Maia, E. H. B., Assis, L. C., De Oliveira, T. A., Da Silva, A. M., & Taranto, A. G. (2020). Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Frontiers in Chemistry, 8, 343. https://doi.org/10.3389/fchem.2020.00343
Manickam, P., Mariappan, S. A., Murugesan, S. M., Hansda, S., Kaushik, A., Shinde, R., & Thipperudraswamy, S. P. (2022). Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors, 12(8), 562. https://doi.org/10.3390/bios12080562
Naik, N., Hameed, B. M. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., Aggarwal, K., Ibrahim, S., Patil, V., Smriti, K., Shetty, S., Rai, B. P., Chlosta, P., & Somani, B. K. (2022). Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Frontiers in Surgery, 9, 862322. https://doi.org/10.3389/fsurg.2022.862322
Niu, H., Li, H., Gao, S., Li, Y., Wei, X., Chen, Y., Yue, W., Zhou, W., & Shen, G. (2022a). Perception?to?Cognition Tactile Sensing Based on Artificial?Intelligence?Motivated Human Full?Skin Bionic Electronic Skin. Advanced Materials, 34(31), 2202622. https://doi.org/10.1002/adma.202202622
Niu, H., Li, H., Gao, S., Li, Y., Wei, X., Chen, Y., Yue, W., Zhou, W., & Shen, G. (2022b). Perception?to?Cognition Tactile Sensing Based on Artificial?Intelligence?Motivated Human Full?Skin Bionic Electronic Skin. Advanced Materials, 34(31), 2202622. https://doi.org/10.1002/adma.202202622
Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction, 122, 103517. https://doi.org/10.1016/j.autcon.2020.103517
Pelau, C., Dabija, D.-C., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior, 122, 106855. https://doi.org/10.1016/j.chb.2021.106855
Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. https://doi.org/10.1016/j.cogr.2023.04.001
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://doi.org/10.1016/j.aiia.2020.04.002
Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of Artificial Intelligence and Machine learning in smart cities. Computer Communications, 154, 313–323. https://doi.org/10.1016/j.comcom.2020.02.069
Copyright (c) 2024 Ocktave Ferdinal, Herman Bakir

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.