Development of a Delphi Based Ultrasonic Testing Expert System
Abstract
A person who has the expertise to operate ultrasonic testing in the field of ultrasonic called experts. Currently very difficult to obtain an ultrasonic expert in an industry. For the expert knowledge of ultrasonic testing is adopted in the computer system. This system called Expert System Type of Disability Determination Using Ultrasonic Welding The Delphi Program. This expert system is used to determine the classification of weld defects in determining the acceptance / rejection of defective welds. In the expert system can also be used to determine the type of weld defects based on defect indications obtained. In addition to the expert system there is an explanation of ultrasonic, calibration procedures and procedures for ultrasonic inspection. In the expert system is the input data that shows an ultrasonic flaw manually entered into the computer. In building an expert system software to use Delphi 7 and Inno Compiler Set Up the installer. Expert systems can be used by people who are just learning the ultrasonic as a tool to determine the acceptance / rejection of defective welds. The results showed that the Expert System Determining the type of defect indications welding able to identify all the defective welds of the inspection. Acceptance of material is observed in accordance with AWS D1.1 acceptance
Full text article
References
Agustanti, A., & Astuti, K. (2022). Relationship Between Social Skills and Social Support with Peers’ Academic Confidence on Boarding High School Students. Journal International Dakwah and Communication, 2(2), 97–110. https://doi.org/10.55849/jidc.v2i2.201
Ai, H., Hu, S., Li, K., & Shao, S. (2020). Environmental regulation, total factor productivity, and enterprise duration: Evidence from China. Business Strategy and the Environment, 29(6), 2284–2296. https://doi.org/10.1002/bse.2502
Amiri, N., Farrahi, G. H., Kashyzadeh, K. R., & Chizari, M. (2020). Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints. Journal of Manufacturing Processes, 52, 26–34. https://doi.org/10.1016/j.jmapro.2020.01.047
Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E.-H. M. (2019). Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access, 7, 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609
Balia, R., Barra, S., Carta, S., Fenu, G., Podda, A. S., & Sansoni, N. (2021). A Deep Learning Solution for Integrated Traffic Control Through Automatic License Plate Recognition. Dalam O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Ble?i?, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, & C. M. Torre (Ed.), Computational Science and Its Applications – ICCSA 2021 (Vol. 12951, hlm. 211–226). Springer International Publishing. https://doi.org/10.1007/978-3-030-86970-0_16
Baumann, A. A., & Cabassa, L. J. (2020). Reframing implementation science to address inequities in healthcare delivery. BMC Health Services Research, 20(1), 190. https://doi.org/10.1186/s12913-020-4975-3
Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2019). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing, 10(10), 4151–4166. https://doi.org/10.1007/s12652-017-0659-1
Deng, Z., Huang, Z., Shen, Y., Huang, Y., Ding, H., Luscombe, A., Johnson, M., Harlow, J. E., Gauthier, R., & Dahn, J. R. (2020). Ultrasonic Scanning to Observe Wetting and “Unwetting” in Li-Ion Pouch Cells. Joule, 4(9), 2017–2029. https://doi.org/10.1016/j.joule.2020.07.014
Du, X., Feng, G., Qi, T., Guo, Y., Zhang, Y., & Wang, Z. (2019). Failure characteristics of large unconfined cemented gangue backfill structure in partial backfill mining. Construction and Building Materials, 194, 257–265. https://doi.org/10.1016/j.conbuildmat.2018.11.038
Fathi, H., Nasir, V., & Kazemirad, S. (2020). Prediction of the mechanical properties of wood using guided wave propagation and machine learning. Construction and Building Materials, 262, 120848. https://doi.org/10.1016/j.conbuildmat.2020.120848
Gaffney, H., Ttofi, M. M., & Farrington, D. P. (2019). Evaluating the effectiveness of school-bullying prevention programs: An updated meta-analytical review. Aggression and Violent Behavior, 45, 111–133. https://doi.org/10.1016/j.avb.2018.07.001
Giannakis, S., Lin, K.-Y. A., & Ghanbari, F. (2021). A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chemical Engineering Journal, 406, 127083. https://doi.org/10.1016/j.cej.2020.127083
Hoang, D.-T., & Kang, H.-J. (2019). Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cognitive Systems Research, 53, 42–50. https://doi.org/10.1016/j.cogsys.2018.03.002
Iglesias-Pradas, S., Hernández-García, Á., Chaparro-Peláez, J., & Prieto, J. L. (2021). Emergency remote teaching and students’ academic performance in higher education during the COVID-19 pandemic: A case study. Computers in Human Behavior, 119, 106713. https://doi.org/10.1016/j.chb.2021.106713
Jasi?nien?, E., Mažeika, L., Samaitis, V., Cic?nas, V., & Mattsson, D. (2019). Ultrasonic non-destructive testing of complex titanium/carbon fibre composite joints. Ultrasonics, 95, 13–21. https://doi.org/10.1016/j.ultras.2019.02.009
Jiang, H., Yi, H., Yilmaz, E., Liu, S., & Qiu, J. (2020). Ultrasonic evaluation of strength properties of cemented paste backfill: Effects of mineral admixture and curing temperature. Ultrasonics, 100, 105983. https://doi.org/10.1016/j.ultras.2019.105983
King, G. G., Bates, J., Berger, K. I., Calverley, P., De Melo, P. L., Dellacà, R. L., Farré, R., Hall, G. L., Ioan, I., Irvin, C. G., Kaczka, D. W., Kaminsky, D. A., Kurosawa, H., Lombardi, E., Maksym, G. N., Marchal, F., Oppenheimer, B. W., Simpson, S. J., Thamrin, C., … Oostveen, E. (2020). Technical standards for respiratory oscillometry. European Respiratory Journal, 55(2), 1900753. https://doi.org/10.1183/13993003.00753-2019
Lopez, A. B., Santos, J., Sousa, J. P., Santos, T. G., & Quintino, L. (2019). Phased Array Ultrasonic Inspection of Metal Additive Manufacturing Parts. Journal of Nondestructive Evaluation, 38(3), 62. https://doi.org/10.1007/s10921-019-0600-y
Majhi, R. K., Nayak, A. N., & Mukharjee, B. B. (2020). Characterization of lime activated recycled aggregate concrete with high-volume ground granulated blast furnace slag. Construction and Building Materials, 259, 119882. https://doi.org/10.1016/j.conbuildmat.2020.119882
Marcantonio, V., Monarca, D., Colantoni, A., & Cecchini, M. (2019). Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: A review. Mechanical Systems and Signal Processing, 120, 32–42. https://doi.org/10.1016/j.ymssp.2018.10.012
Marco, M. L., Sanders, M. E., Gänzle, M., Arrieta, M. C., Cotter, P. D., De Vuyst, L., Hill, C., Holzapfel, W., Lebeer, S., Merenstein, D., Reid, G., Wolfe, B. E., & Hutkins, R. (2021). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology & Hepatology, 18(3), 196–208. https://doi.org/10.1038/s41575-020-00390-5
Ramdani, S., Guettala, A., Benmalek, M., & Aguiar, J. B. (2019). Physical and mechanical performance of concrete made with waste rubber aggregate, glass powder and silica sand powder. Journal of Building Engineering, 21, 302–311. https://doi.org/10.1016/j.jobe.2018.11.003
Sadowski, ?., Piechówka-Mielnik, M., Widziszowski, T., Gardynik, A., & Mackiewicz, S. (2019). Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust. Journal of Cleaner Production, 212, 727–740. https://doi.org/10.1016/j.jclepro.2018.12.059
Saeedifar, M., Mansvelder, J., Mohammadi, R., & Zarouchas, D. (2019). Using passive and active acoustic methods for impact damage assessment of composite structures. Composite Structures, 226, 111252. https://doi.org/10.1016/j.compstruct.2019.111252
Shah, S. J., Borlaug, B. A., Kitzman, D. W., McCulloch, A. D., Blaxall, B. C., Agarwal, R., Chirinos, J. A., Collins, S., Deo, R. C., Gladwin, M. T., Granzier, H., Hummel, S. L., Kass, D. A., Redfield, M. M., Sam, F., Wang, T. J., Desvigne-Nickens, P., & Adhikari, B. B. (2020). Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation, 141(12), 1001–1026. https://doi.org/10.1161/CIRCULATIONAHA.119.041886
Virkkunen, I., Koskinen, T., Jessen-Juhler, O., & Rinta-aho, J. (2021). Augmented Ultrasonic Data for Machine Learning. Journal of Nondestructive Evaluation, 40(1), 4. https://doi.org/10.1007/s10921-020-00739-5
Wu, J., Jing, H., Yin, Q., Yu, L., Meng, B., & Li, S. (2020). Strength prediction model considering material, ultrasonic and stress of cemented waste rock backfill for recycling gangue. Journal of Cleaner Production, 276, 123189. https://doi.org/10.1016/j.jclepro.2020.123189
Yu, Z., Zhao, C., Wang, Z., Qin, Y., Su, Z., Li, X., Zhou, F., & Zhao, G. (2020). Searching Central Difference Convolutional Networks for Face Anti-Spoofing. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5294–5304. https://doi.org/10.1109/CVPR42600.2020.00534
Zhang, D. Y., Dmello, C., Chen, L., Arrieta, V. A., Gonzalez-Buendia, E., Kane, J. R., Magnusson, L. P., Baran, A., James, C. D., Horbinski, C., Carpentier, A., Desseaux, C., Canney, M., Muzzio, M., Stupp, R., & Sonabend, A. M. (2020). Ultrasound-mediated Delivery of Paclitaxel for Glioma: A Comparative Study of Distribution, Toxicity, and Efficacy of Albumin-bound Versus Cremophor Formulations. Clinical Cancer Research, 26(2), 477–486. https://doi.org/10.1158/1078-0432.CCR-19-2182
Zhang, K., Mao, Z., Huang, Y., Xu, Y., Huang, C., Guo, Y., Ren, X., & Liu, C. (2020). Ultrasonic assisted water-in-oil emulsions encapsulating macro-molecular polysaccharide chitosan: Influence of molecular properties, emulsion viscosity and their stability. Ultrasonics Sonochemistry, 64, 105018. https://doi.org/10.1016/j.ultsonch.2020.105018
Authors
Copyright (c) 2023 Bagus Dwi Cahyono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.