Asset Maintenance Monitoring Application: A Case Study of a Government Bank Branch Office
Abstract
Asset management in a company is essential to do. Asset management may include record keeping, maintenance, and management environment further. Recording information asset owned by a company is the primary and most important thing to do to record data assets owned by the company. The existence of definite information about the asset owned by a company will provide convenience for the company that is and automatically, the company will also easier to carry out the asset management process further. One of the governments in the Jakarta Branch, which has assets, should be maintained. Recording information assets in one of the government banks, Jakarta Branch, is only partially managed with a computerized system. The process of recording data assets is still done manually and also not maximum. This research developed an Asset Monitoring Application Maintenance feature that can do registration detail information about the attributes and Monitoring of existing assets and Online Work Order. The software development model used in this study is the waterfall model. This thesis will explain the activities in each development phase. With this application, all the attributes of data assets owned by the company can be well identified and inventoried so that the process of monitoring assets is more optimum and easier to do
Full text article
References
Al-Fraihat, D., Joy, M., Masa’deh, R., & Sinclair, J. (2020). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior, 102, 67–86. https://doi.org/10.1016/j.chb.2019.08.004
Balia, R., Barra, S., Carta, S., Fenu, G., Podda, A. S., & Sansoni, N. (2021). A Deep Learning Solution for Integrated Traffic Control Through Automatic License Plate Recognition. Dalam O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Ble?i?, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, & C. M. Torre (Ed.), Computational Science and Its Applications – ICCSA 2021 (Vol. 12951, hlm. 211–226). Springer International Publishing. https://doi.org/10.1007/978-3-030-86970-0_16
Bao, Y., Tang, Z., Li, H., & Zhang, Y. (2019). Computer vision and deep learning–based data anomaly detection method for structural health monitoring. Structural Health Monitoring, 18(2), 401–421. https://doi.org/10.1177/1475921718757405
Boje, C., Guerriero, A., Kubicki, S., & Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, 114, 103179. https://doi.org/10.1016/j.autcon.2020.103179
Chen, H., Yamaguchi, S., Morita, Y., Nakao, H., Zhai, X., Shimizu, Y., Mitsunuma, H., & Kanai, M. (2021). Data-driven catalyst optimization for stereodivergent asymmetric synthesis by iridium/boron hybrid catalysis. Cell Reports Physical Science, 2(12), 100679. https://doi.org/10.1016/j.xcrp.2021.100679
Fitri, V. A., Andreswari, R., & Hasibuan, M. A. (2019). Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm. Procedia Computer Science, 161, 765–772. https://doi.org/10.1016/j.procs.2019.11.181
Gibb, R., Browning, E., Glover?Kapfer, P., & Jones, K. E. (2019). Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods in Ecology and Evolution, 10(2), 169–185. https://doi.org/10.1111/2041-210X.13101
Giudicessi, J. R., Noseworthy, P. A., Friedman, P. A., & Ackerman, M. J. (2020). Urgent Guidance for Navigating and Circumventing the QTc-Prolonging and Torsadogenic Potential of Possible Pharmacotherapies for Coronavirus Disease 19 (COVID-19). Mayo Clinic Proceedings, 95(6), 1213–1221. https://doi.org/10.1016/j.mayocp.2020.03.024
Guerrini-Rousseau, L., Varlet, P., Colas, C., Andreiuolo, F., Bourdeaut, F., Dahan, K., Devalck, C., Faure-Conter, C., Genuardi, M., Goldberg, Y., Kuhlen, M., Moalla, S., Opocher, E., Perez-Alonso, V., Sehested, A., Slavc, I., Unger, S., Wimmer, K., Grill, J., & Brugières, L. (2019). Constitutional mismatch repair deficiency–associated brain tumors: Report from the European C4CMMRD consortium. Neuro-Oncology Advances, 1(1), vdz033. https://doi.org/10.1093/noajnl/vdz033
Jarvis, K. B., LeBlanc, M., Tulstrup, M., Nielsen, R. L., Albertsen, B. K., Gupta, R., Huttunen, P., Jónsson, Ó. G., Rank, C. U., Ranta, S., Ruud, E., Saks, K., Trakymiene, S. S., Tuckuviene, R., & Schmiegelow, K. (2019). Candidate single nucleotide polymorphisms and thromboembolism in acute lymphoblastic leukemia – A NOPHO ALL2008 study. Thrombosis Research, 184, 92–98. https://doi.org/10.1016/j.thromres.2019.11.002
Khawaja, W., Guvenc, I., Matolak, D. W., Fiebig, U.-C., & Schneckenburger, N. (2019). A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles. IEEE Communications Surveys & Tutorials, 21(3), 2361–2391. https://doi.org/10.1109/COMST.2019.2915069
Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A. K. (2020). Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587. https://doi.org/10.1016/j.ymssp.2019.106587
Lu, B., Dao, P., Liu, J., He, Y., & Shang, J. (2020). Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sensing, 12(16), 2659. https://doi.org/10.3390/rs12162659
Lyu, M., Wang, H., Li, G., Zheng, S., & Situ, G. (2019). Learning-based lensless imaging through optically thick scattering media. Advanced Photonics, 1(03), 1. https://doi.org/10.1117/1.AP.1.3.036002
Messina, G., Praticò, S., Badagliacca, G., Di Fazio, S., Monti, M., & Modica, G. (2021). Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery. Drones, 5(3), 61. https://doi.org/10.3390/drones5030061
Naparstek, O., & Cohen, K. (2019). Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access. IEEE Transactions on Wireless Communications, 18(1), 310–323. https://doi.org/10.1109/TWC.2018.2879433
Nurazizah, N., Halimatusadiah, I., Tabroni, I., Nitin, M., & Bradford, S. (2023). History of Islamic Civilization in Post-Independence Indonesia. International Journal of Educational Narratives, 1(5), 231–239. https://doi.org/10.55849/ijen.v1i5.339
Qi, X., Chen, G., Li, Y., Cheng, X., & Li, C. (2019). Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives. Engineering, 5(4), 721–729. https://doi.org/10.1016/j.eng.2019.04.012
Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., & Faubert, J. (2019). Deep learning-based electroencephalography analysis: A systematic review. Journal of Neural Engineering, 16(5), 051001. https://doi.org/10.1088/1741-2552/ab260c
Verdoliva, L. (2020). Media Forensics and DeepFakes: An Overview. IEEE Journal of Selected Topics in Signal Processing, 14(5), 910–932. https://doi.org/10.1109/JSTSP.2020.3002101
Wang, M., & Deng, W. (2021). Deep face recognition: A survey. Neurocomputing, 429, 215–244. https://doi.org/10.1016/j.neucom.2020.10.081
Wang, S., Chen, H., & Sun, B. (2020). Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chemistry, 315, 126158. https://doi.org/10.1016/j.foodchem.2019.126158
Zamora-Izquierdo, M. A., Santa, J., Martínez, J. A., Martínez, V., & Skarmeta, A. F. (2019). Smart farming IoT platform based on edge and cloud computing. Biosystems Engineering, 177, 4–17. https://doi.org/10.1016/j.biosystemseng.2018.10.014
Zhang, S., Zhang, S., Wang, B., & Habetler, T. G. (2020). Deep Learning Algorithms for Bearing Fault Diagnostics—A Comprehensive Review. IEEE Access, 8, 29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859
Authors
Copyright (c) 2023 Julaiha Probo Anggraini

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.