Utilization of Multi-Agent Systems in Managing Smart Transportation Systems in Urban Areas

Amelia Hayati (1), Rachmat Prasetio (2), Mariana Diah Puspitasari (3), Deng Jiao (4)
(1) Universitas Padjadjaran, Indonesia,
(2) Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia,
(3) Politeknik Perkeretaapian Indonesia Madiun, Indonesia,
(4) Universiti Sains Malaysia, Malaysia

Abstract

Urban areas face increasing challenges in managing transportation systems due to rising population densities and traffic congestion. Traditional traffic management methods often lack the flexibility and responsiveness needed to address dynamic conditions in real time. This study explores the utilization of multi-agent systems (MAS) as a solution for optimizing smart transportation systems within urban environments. The research aims to evaluate the effectiveness of MAS in improving traffic flow, reducing congestion, and enhancing system responsiveness through autonomous decision-making and coordination among multiple agents. A simulation-based methodology was employed to analyze MAS performance in managing various transportation variables, including traffic density, signal timing, and incident response. Each agent was programmed to perform specific tasks, such as monitoring traffic, optimizing traffic signals, and re-routing vehicles, with collaborative decision-making to address congestion in real time. Results indicate that MAS implementation led to a 30% improvement in traffic flow efficiency and a 25% reduction in congestion levels. The system also demonstrated adaptive capabilities, allowing for real-time adjustments to unexpected conditions, such as accidents or road closures. The findings suggest that multi-agent systems provide a viable, scalable solution for smart transportation management in complex urban settings. Implementing MAS can significantly enhance the efficiency and adaptability of urban transportation systems, contributing to more sustainable and efficient mobility solutions in rapidly growing cities.

Full text article

Generated from XML file

References

Abishu, H. N., Seid, A. M., Márquez-Sánchez, S., Fernandez, J. H., Corchado, J. M., & Erbad, A. (2024). Multi-Agent DRL-based Multi-Objective Demand Response Optimization for Real-Time Energy Management in Smart Homes. Int. Wirel. Commun. Mob. Comput. Conf., IWCMC, 1210–1217. Scopus. https://doi.org/10.1109/IWCMC61514.2024.10592515

Abraham, M., Aithal, H., & Mohan, K. (2020). Blockchain and Collaborative Intelligence based next generation Smart Toll Application. Conf. Blockchain Res. Appl. Innov. Networks Serv., BRAINS, 206–207. Scopus. https://doi.org/10.1109/BRAINS49436.2020.9223296

Abuga, D., & Raghava, N. S. (2021). Real-time smart garbage bin mechanism for solid waste management in smart cities. Sustainable Cities and Society, 75. Scopus. https://doi.org/10.1016/j.scs.2021.103347

Akhtar, S. M., Nazir, M., Saleem, K., Ul Haque, H. M., & Hussain, I. (2020). An ontology-driven iot based healthcare formalism. International Journal of Advanced Computer Science and Applications, 2, 479–486. Scopus. https://doi.org/10.14569/ijacsa.2020.0110261

Al-Shamaileh, M., Anthony, P., & Charters, S. (2022). Evaluating Trust and Reputation Models for IoT Environment. Dalam Jezic G., Chen-Burger Y.J., Kusek M., Šperka R., Howlett R.J., Howlett R.J., Howlett R.J., Jain L.C., & Jain L.C. (Ed.), Smart Innov. Syst. Technol. (Vol. 306, hlm. 49–60). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-19-3359-2_5

Ameur, M. E. L. A., Drias, H., & Brik, B. (2024). Cooperative parking search strategy through V2X communications: An agent-based decision. Wireless Networks, 30(9), 7167–7188. Scopus. https://doi.org/10.1007/s11276-023-03568-2

Bahrpeyma, F., & Reichelt, D. (2022). A review of the applications of multi-agent reinforcement learning in smart factories. Frontiers in Robotics and AI, 9. Scopus. https://doi.org/10.3389/frobt.2022.1027340

Bano, A., Ud Din, I., & Al-Huqail, A. A. (2020). AIoT-Based Smart Bin for Real-Time Monitoring and Management of Solid Waste. Scientific Programming, 2020. Scopus. https://doi.org/10.1155/2020/6613263

Bi, M., Kovalenko, I., Tilbury, D. M., & Barton, K. (2024). Dynamic distributed decision-making for resilient resource reallocation in disrupted manufacturing systems. International Journal of Production Research, 62(5), 1737–1757. Scopus. https://doi.org/10.1080/00207543.2023.2200567

Bregar, A. (2020). Implementation of a multi-agent multi-criteria negotiation protocol for self-sustainable smart grids. Journal of Decision Systems, 29(sup1), 87–97. Scopus. https://doi.org/10.1080/12460125.2020.1848374

Cao, J., Yu, Z., & Yang, J. (2024). A migration strategy based on cluster collaboration predictions for mobile edge computing-enabled smart rail system. Journal of Supercomputing, 80(11), 15330–15361. Scopus. https://doi.org/10.1007/s11227-024-06058-0

Chainbi, W., & Hamdi, N. (2022). A multi-agent system based architecture for enabling Edge autonomous management. Sustainable Computing: Informatics and Systems, 36. Scopus. https://doi.org/10.1016/j.suscom.2022.100816

De La Cruz, J., Vasquez, J. C., Guerrero, J. M., Luna, E. G., & Candelo-Becerra, J. E. (2023). Adaptive Multi-Agent-Zonal Protection Scheme for AC Microgrids. Eur. Conf. Power Electron. Appl., EPE ECCE Europe. 2023 25th European Conference on Power Electronics and Applications, EPE 2023 ECCE Europe. Scopus. https://doi.org/10.23919/EPE23ECCEEurope58414.2023.10264617

Deepa, K. R., & Thillaiarasu, N. (2024). Integrated Architecture for Smart Grid Energy Management: Deep Attention-Enhanced Sequence-to-Sequence Model with Energy-Aware Optimized Reinforcement Learning for Demand Response. SN Computer Science, 5(8). Scopus. https://doi.org/10.1007/s42979-024-03305-2

Demazeau Y., Holvoet T., Corchado J.M., & Costantini S. (Ed.). (2020). 18th International Conference on Practical Applications of Agents and Multi-Agent Systems, PAAMS 2020. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12092 LNAI. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088580925&partnerID=40&md5=8124063d11ee598bfc826ce714291364

Dutta M., Krishna C.R., Kumar R., & Kalra M. (Ed.). (2020). International Conference on IoT Inclusive Life, ICIIL 2019. Lecture Notes in Networks and Systems, 116. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084703966&partnerID=40&md5=a4a771937f2a7f0a7a09f3af7a575cd7

Fallahi, A., Rosenberger, J. M., Chen, V. C. P., Lee, W.-J., & Wang, S. (2019). Linear programming for multi-Agent demand response. IEEE Access, 7, 181479–181490. Scopus. https://doi.org/10.1109/ACCESS.2019.2959727

Gorodetsky, V. I., Kozhevnikov, S. S., Novichkov, D., & Skobelev, P. O. (2019). The Framework for Designing Autonomous Cyber-Physical Multi-agent Systems for Adaptive Resource Management. Dalam Marík V., Kadera P., Rzevski G., Zoitl A., Anderst-Kotsis G., Khalil I., & Tjoa A.M. (Ed.), Lect. Notes Comput. Sci.: Vol. 11710 LNAI (hlm. 52–64). Springer; Scopus. https://doi.org/10.1007/978-3-030-27878-6_5

Gu, W., Li, Y., Tang, D., Wang, X., & Yuan, M. (2022). Using real-time manufacturing data to schedule a smart factory via reinforcement learning. Computers and Industrial Engineering, 171. Scopus. https://doi.org/10.1016/j.cie.2022.108406

He, B., Wang, J., Qi, Q., Sun, H., Liao, J., Du, C., Yang, X., & Han, Z. (2021). DeepCC: Multi-Agent Deep Reinforcement Learning Congestion Control for Multi-Path TCP Based on Self-Attention. IEEE Transactions on Network and Service Management, 18(4), 4770–4788. Scopus. https://doi.org/10.1109/TNSM.2021.3093302

Jiang, W., Ren, Y., & Wang, Y. (2023). Improving anti-jamming decision-making strategies for cognitive radar via multi-agent deep reinforcement learning. Digital Signal Processing: A Review Journal, 135. Scopus. https://doi.org/10.1016/j.dsp.2023.103952

Khorram, M., Faria, P., Abrishambaf, O., & Vale, Z. (2019). Demand response implementation in an optimization based SCADA model under real-time pricing schemes (Rodríguez S., Prieto J., Faria P., Klos S., Fernández A., Mazuelas S., Jiménez-López M.D., Moreno M.N., & Navarro E.M., Ed.; Vol. 801, hlm. 21–29). Springer Verlag; Scopus. https://doi.org/10.1007/978-3-319-99608-0_3

Kouveliotis-Lysikatos, I., Koukoula, D. I., Dimeas, A. L., & Hatziargyriou, N. D. (2022). Plug-and-Play Algorithms for the Efficient Coordination of Active Distribution Grids. Proceedings of the IEEE, 110(12), 1927–1939. Scopus. https://doi.org/10.1109/JPROC.2022.3186047

Liu, S., Wang, L., Wang, X. V., & Wiktorsson, M. (2020). A Framework of Data-Driven Dynamic Optimisation for Smart Production Logistics. Dalam Lalic B., Marjanovic U., Majstorovic V., von Cieminski G., & Romero D. (Ed.), IFIP Advances in Information and Communication Technology: Vol. 592 IFIP (hlm. 213–221). Springer; Scopus. https://doi.org/10.1007/978-3-030-57997-5_25

Luzolo, P. H., Elrawashdeh, Z., Tchappi, I., Galland, S., & Outay, F. (2024). Combining Multi-Agent Systems and Artificial Intelligence of Things: Technical challenges and gains. Internet of Things (Netherlands), 28. Scopus. https://doi.org/10.1016/j.iot.2024.101364

Moradi, J., Shahinzadeh, H., Nafisi, H., Marzband, M., & Gharehpetian, G. B. (2019). Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems. Int. Conf. Prot. Autom. Power Syst., IPAPS, 83–92. Scopus. https://doi.org/10.1109/IPAPS49326.2019.9069391

Rocha A., Steels L., & van den Herik J. (Ed.). (2021). 13th International Conference on Agents and Artificial Intelligence , ICAART 2021. Dalam Int. Conf. Agent. Artif. Intell. (Vol. 2). Science and Technology Publications, Lda; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182583458&partnerID=40&md5=61195b891fe2573142e7f1b5b3f978b4

Sassite, F., Addou, M., & Barramou, F. (2022). A Machine Learning and Multi-Agent Model to Automate Big Data Analytics in Smart Cities. International Journal of Advanced Computer Science and Applications, 13(7), 441–451. Scopus. https://doi.org/10.14569/IJACSA.2022.0130754

Sujil, A., Kumar, R., Bansal, R. C., & Naidoo, R. M. (2021). Stateflow based Modeling of Multi Agent System for Smart Microgrid Energy Management. Dalam Rajakaruna S., Siada A.A., Iu H.C., Ghosh A., & Fernando T. (Ed.), Proc. Australas. Univ. Power Eng. Conf., AUPEC. Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/AUPEC52110.2021.9597830

Tarasiev, A., Filippova, M., Aksyonov, K., Aksyonova, O., & Antonova, A. (2020). Using of Open-Source Technologies for the Design and Development of a Speech Processing System Based on Stemming Methods. Dalam Ivanov V., Kruglov A., Masyagin S., Sillitti A., & Succi G. (Ed.), IFIP Advances in Information and Communication Technology: Vol. 582 IFIP (hlm. 98–105). Springer; Scopus. https://doi.org/10.1007/978-3-030-47240-5_10

Tarasiev, A., Talancev, E., Aksyonov, K., Aksyonova, O., Kalinin, I., & Chiryshev, U. (2019). Application of stemming methods to development a module of a post-processing of recognized speech in intelligent automated system for dialogue and decision-making in real time. SIBIRCON - Int. Multi-Conf. Eng., Comput. Inf. Sci., Proc., 104–109. Scopus. https://doi.org/10.1109/SIBIRCON48586.2019.8958317

Vale, Z., Faria, P., Abrishambaf, O., Gomes, L., & Pinto, T. (2021). MARTINE—A platform for real-time energy management in smart grids. Energies, 14(7). Scopus. https://doi.org/10.3390/en14071820

Visan, M., & Mone, F. (2023). Computer-Supported Smart Green-Blue Infrastructure Management. International Journal of Computers, Communications and Control, 18(2). Scopus. https://doi.org/10.15837/ijccc.2023.2.5286

Wang, X., Zhang, L., Liu, Y., Li, F., Chen, Z., Zhao, C., & Bai, T. (2022). Dynamic scheduling of tasks in cloud manufacturing with multi-agent reinforcement learning. Journal of Manufacturing Systems, 65, 130–145. Scopus. https://doi.org/10.1016/j.jmsy.2022.08.004

Xing, J., Ma, Y., Cai, J., Shi, J., & Liu, J. (2023). Distributed Scheduling Method for Smart Shop Floor Based on QMIX. IEEE Int. Conf. Autom. Sci. Eng., 2023-August. Scopus. https://doi.org/10.1109/CASE56687.2023.10260396

Xue, L., Zhang, Y., Wang, J., Li, H., & Li, F. (2024). Privacy-preserving multi-level co-regulation of VPPs via hierarchical safe deep reinforcement learning. Applied Energy, 371. Scopus. https://doi.org/10.1016/j.apenergy.2024.123654

Yuan, Q., Li, J., Zhou, H., Luo, G., Lin, T., Yang, F., & Shen, X. S. (2020). Cross-Domain Resource Orchestration for the Edge-Computing-Enabled Smart Road. IEEE Network, 34(5), 60–67. Scopus. https://doi.org/10.1109/MNET.011.2000007

Zhang, H., Shen, X., Mu, H., Liu, A., & Wang, H. (2020). Research on Online Optimal Dispatching of Residential Energy Consumption Based on Multi-agent Asynchronous Deep Reinforcement Learning. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 40(1), 117–127. Scopus. https://doi.org/10.13334/j.0258-8013.pcsee.182498

Zhou, T., Tang, D., Zhu, H., & Zhang, Z. (2021). Multi-agent reinforcement learning for online scheduling in smart factories. Robotics and Computer-Integrated Manufacturing, 72. Scopus. https://doi.org/10.1016/j.rcim.2021.102202

Authors

Amelia Hayati
amelia.hayati@unpad.ac.id (Primary Contact)
Rachmat Prasetio
Mariana Diah Puspitasari
Deng Jiao
Hayati, A., Prasetio, R. ., Puspitasari, M. D. ., & Jiao, D. . (2024). Utilization of Multi-Agent Systems in Managing Smart Transportation Systems in Urban Areas. Journal of Computer Science Advancements, 2(6), 364–377. https://doi.org/10.70177/jsca.v2i6.1534

Article Details

No Related Submission Found