Immunomodulation Mechanism by Gold Nanoparticles for Cancer Therapy

Salma Hamdan (1), Bassam Al-Khouri (2), Rami Hariri (3)
(1) Al al-Bayt University, Jordan,
(2) Mutah University, Jordan,
(3) American University of Beirut, Lebanon

Abstract

Conventional cancer treatment is often limited by side effects and resistance to therapy. Therefore, immunotherapy research, especially those involving gold nanoparticles (AuNPs), is growing as a more effective and specific therapeutic alternative. AuNPs have the potential to modulate the body's immune response, improving the recognition and destruction of cancer cells by the immune system. This study aims to investigate the immunomodulation mechanisms triggered by AuNPs and evaluate their potential as cancer therapeutic agents by increasing immune cell activity and cytokine production.


This study used cell culture to test the effects of AuNPs on the activity of T cells, macrophages, and dendritic cells as well as the production of cytokines IL-2, TNF-?, and IL-12. Gold nanoparticles were applied at various concentrations (5, 10, 20 ?g/ml) and treatment times (24, 48, 72 hours), then measured using flow cytometry and ELISA. The results showed that AuNPs increased the activity of immune cells, especially dendritic cells, macrophages, and T cells, as well as the production of cytokines IL-2, TNF-?, and IL-12. This increase in immune cell and cytokine activity is directly related to the concentration and duration of AuNPs treatment. This study shows that AuNPs can modulate the body's immune system and increase the immune response to cancer. Gold nanoparticles have the potential as immunomodulatory agents in more effective and safe cancer therapy. More research is needed to confirm these findings in animal and human models.

Full text article

Generated from XML file

References

Alle, M., G, B. R., Kim, T. H., Park, S. H., Lee, S.-H., & Kim, J.-C. (2020). Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydrate Polymers, 229, 115511. https://doi.org/10.1016/j.carbpol.2019.115511

Badeggi, U., Ismail, E., Adeloye, A., Botha, S., Badmus, J., Marnewick, J., Cupido, C., & Hussein, A. (2020). Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents. Biomolecules, 10(3), 452. https://doi.org/10.3390/biom10030452

Bouché, M., Hsu, J. C., Dong, Y. C., Kim, J., Taing, K., & Cormode, D. P. (2020). Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjugate Chemistry, 31(2), 303–314. https://doi.org/10.1021/acs.bioconjchem.9b00669

Cao, Y., Wu, J., Pang, B., Zhang, H., & Le, X. C. (2021). CRISPR/Cas12a-mediated gold nanoparticle aggregation for colorimetric detection of SARS-CoV-2. Chemical Communications, 57(56), 6871–6874. https://doi.org/10.1039/D1CC02546E

Chen, J., Gong, M., Fan, Y., Feng, J., Han, L., Xin, H. L., Cao, M., Zhang, Q., Zhang, D., Lei, D., & Yin, Y. (2022). Collective Plasmon Coupling in Gold Nanoparticle Clusters for Highly Efficient Photothermal Therapy. ACS Nano, 16(1), 910–920. https://doi.org/10.1021/acsnano.1c08485

Chen, J., Ma, Y., Du, W., Dai, T., Wang, Y., Jiang, W., Wan, Y., Wang, Y., Liang, G., & Wang, G. (2020). Furin?Instructed Intracellular Gold Nanoparticle Aggregation for Tumor Photothermal Therapy. Advanced Functional Materials, 30(50), 2001566. https://doi.org/10.1002/adfm.202001566

Cho, N. H., Byun, G. H., Lim, Y.-C., Im, S. W., Kim, H., Lee, H.-E., Ahn, H.-Y., & Nam, K. T. (2020). Uniform Chiral Gap Synthesis for High Dissymmetry Factor in Single Plasmonic Gold Nanoparticle. ACS Nano, 14(3), 3595–3602. https://doi.org/10.1021/acsnano.9b10094

Ding, Y., Xu, H., Xu, C., Tong, Z., Zhang, S., Bai, Y., Chen, Y., Xu, Q., Zhou, L., Ding, H., Sun, Z., Yan, S., Mao, Z., & Wang, W. (2020). A Nanomedicine Fabricated from Gold Nanoparticles?Decorated Metal–Organic Framework for Cascade Chemo/Chemodynamic Cancer Therapy. Advanced Science, 7(17), 2001060. https://doi.org/10.1002/advs.202001060

Fan, J., Cheng, Y., & Sun, M. (2020). Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. The Chemical Record, 20(12), 1474–1504. https://doi.org/10.1002/tcr.202000087

Gao, X., Liu, J., Li, M., Guo, C., Long, H., Zhang, Y., & Xin, L. (2020). Mechanistic study of selective adsorption and reduction of Au (III) to gold nanoparticles by ion-imprinted porous alginate microspheres. Chemical Engineering Journal, 385, 123897. https://doi.org/10.1016/j.cej.2019.123897

Grys, D.-B., De Nijs, B., Salmon, A. R., Huang, J., Wang, W., Chen, W.-H., Scherman, O. A., & Baumberg, J. J. (2020). Citrate Coordination and Bridging of Gold Nanoparticles: The Role of Gold Adatoms in AuNP Aging. ACS Nano, 14(7), 8689–8696. https://doi.org/10.1021/acsnano.0c03050

Gupta, N., & Malviya, R. (2021). Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1875(2), 188532. https://doi.org/10.1016/j.bbcan.2021.188532

He, X., Dai, L., Ye, L., Sun, X., Enoch, O., Hu, R., Zan, X., Lin, F., & Shen, J. (2022). A Vehicle?Free Antimicrobial Polymer Hybrid Gold Nanoparticle as Synergistically Therapeutic Platforms for Staphylococcus aureus Infected Wound Healing. Advanced Science, 9(14), 2105223. https://doi.org/10.1002/advs.202105223

Hosny, M., Eltaweil, A. S., Mostafa, M., El-Badry, Y. A., Hussein, E. E., Omer, A. M., & Fawzy, M. (2022). Facile Synthesis of Gold Nanoparticles for Anticancer, Antioxidant Applications, and Photocatalytic Degradation of Toxic Organic Pollutants. ACS Omega, 7(3), 3121–3133. https://doi.org/10.1021/acsomega.1c06714

Hua, Z., Yu, T., Liu, D., & Xianyu, Y. (2021). Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosensors and Bioelectronics, 179, 113076. https://doi.org/10.1016/j.bios.2021.113076

Huang, C., Wen, T., Shi, F.-J., Zeng, X.-Y., & Jiao, Y.-J. (2020a). Rapid Detection of IgM Antibodies against the SARS-CoV-2 Virus via Colloidal Gold Nanoparticle-Based Lateral-Flow Assay. ACS Omega, 5(21), 12550–12556. https://doi.org/10.1021/acsomega.0c01554

Huang, C., Wen, T., Shi, F.-J., Zeng, X.-Y., & Jiao, Y.-J. (2020b). Rapid Detection of IgM Antibodies against the SARS-CoV-2 Virus via Colloidal Gold Nanoparticle-Based Lateral-Flow Assay. ACS Omega, 5(21), 12550–12556. https://doi.org/10.1021/acsomega.0c01554

Ishida, T., Murayama, T., Taketoshi, A., & Haruta, M. (2020). Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chemical Reviews, 120(2), 464–525. https://doi.org/10.1021/acs.chemrev.9b00551

Khan, S. A., Shahid, S., & Lee, C.-S. (2020). Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Clerodendrum inerme; Characterization, Antimicrobial, and Antioxidant Activities. Biomolecules, 10(6), 835. https://doi.org/10.3390/biom10060835

Lee, T., Mohammadniaei, M., Zhang, H., Yoon, J., Choi, H. K., Guo, S., Guo, P., & Choi, J. (2020). Single Functionalized pRNA/Gold Nanoparticle for Ultrasensitive MicroRNA Detection Using Electrochemical Surface?Enhanced Raman Spectroscopy. Advanced Science, 7(3), 1902477. https://doi.org/10.1002/advs.201902477

Lew, T. T. S., Aung, K. M. M., Ow, S. Y., Amrun, S. N., Sutarlie, L., Ng, L. F. P., & Su, X. (2021). Epitope-Functionalized Gold Nanoparticles for Rapid and Selective Detection of SARS-CoV-2 IgG Antibodies. ACS Nano, 15(7), 12286–12297. https://doi.org/10.1021/acsnano.1c04091

Luo, D., Wang, X., Burda, C., & Basilion, J. P. (2021). Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers, 13(8), 1825. https://doi.org/10.3390/cancers13081825

Mohammadniaei, M., Koyappayil, A., Sun, Y., Min, J., & Lee, M.-H. (2020). Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosensors and Bioelectronics, 159, 112208. https://doi.org/10.1016/j.bios.2020.112208

Mostafavi, E., Zarepour, A., Barabadi, H., Zarrabi, A., Truong, L. B., & Medina-Cruz, D. (2022). Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: Beginning a new era in cancer theragnostic. Biotechnology Reports, 34, e00714. https://doi.org/10.1016/j.btre.2022.e00714

Oishi, M., & Saito, K. (2020). Simple Single-Legged DNA Walkers at Diffusion-Limited Nanointerfaces of Gold Nanoparticles Driven by a DNA Circuit Mechanism. ACS Nano, 14(3), 3477–3489. https://doi.org/10.1021/acsnano.9b09581

Patil, S. J., Dubal, D. P., & Lee, D.-W. (2020). Gold nanoparticles decorated rGO-ZnCo2O4 nanocomposite: A promising positive electrode for high performance hybrid supercapacitors. Chemical Engineering Journal, 379, 122211. https://doi.org/10.1016/j.cej.2019.122211

Penninckx, S., Heuskin, A.-C., Michiels, C., & Lucas, S. (2020). Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers, 12(8), 2021. https://doi.org/10.3390/cancers12082021

Perveen, K., Husain, F. M., Qais, F. A., Khan, A., Razak, S., Afsar, T., Alam, P., Almajwal, A. M., & Abulmeaty, M. M. A. (2021). Microwave-Assisted Rapid Green Synthesis of Gold Nanoparticles Using Seed Extract of Trachyspermum ammi: ROS Mediated Biofilm Inhibition and Anticancer Activity. Biomolecules, 11(2), 197. https://doi.org/10.3390/biom11020197

Qian, J., Ren, C., Wang, C., An, K., Cui, H., Hao, N., & Wang, K. (2020). Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1. Biosensors and Bioelectronics, 166, 112443. https://doi.org/10.1016/j.bios.2020.112443

Razzino, C. A., Serafín, V., Gamella, M., Pedrero, M., Montero-Calle, A., Barderas, R., Calero, M., Lobo, A. O., Yáñez-Sedeño, P., Campuzano, S., & Pingarrón, J. M. (2020). An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosensors and Bioelectronics, 163, 112238. https://doi.org/10.1016/j.bios.2020.112238

Sani, A., Cao, C., & Cui, D. (2021). Toxicity of gold nanoparticles (AuNPs): A review. Biochemistry and Biophysics Reports, 26, 100991. https://doi.org/10.1016/j.bbrep.2021.100991

Sankar, M., He, Q., Engel, R. V., Sainna, M. A., Logsdail, A. J., Roldan, A., Willock, D. J., Agarwal, N., Kiely, C. J., & Hutchings, G. J. (2020). Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chemical Reviews, 120(8), 3890–3938. https://doi.org/10.1021/acs.chemrev.9b00662

Sehit, E., Drzazgowska, J., Buchenau, D., Yesildag, C., Lensen, M., & Altintas, Z. (2020). Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers. Biosensors and Bioelectronics, 165, 112432. https://doi.org/10.1016/j.bios.2020.112432

Singh, R., Kumar, S., Liu, F.-Z., Shuang, C., Zhang, B., Jha, R., & Kaushik, B. K. (2020). Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection. Biosensors and Bioelectronics, 168, 112557. https://doi.org/10.1016/j.bios.2020.112557

Yang, K., Li, J., Lamy De La Chapelle, M., Huang, G., Wang, Y., Zhang, J., Xu, D., Yao, J., Yang, X., & Fu, W. (2021). A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosensors and Bioelectronics, 175, 112874. https://doi.org/10.1016/j.bios.2020.112874

You, S.-M., Luo, K., Jung, J.-Y., Jeong, K.-B., Lee, E.-S., Oh, M.-H., & Kim, Y.-R. (2020). Gold Nanoparticle-Coated Starch Magnetic Beads for the Separation, Concentration, and SERS-Based Detection of E. coli O157:H7. ACS Applied Materials & Interfaces, 12(16), 18292–18300. https://doi.org/10.1021/acsami.0c00418

Zhang, J., Mou, L., & Jiang, X. (2020). Surface chemistry of gold nanoparticles for health-related applications. Chemical Science, 11(4), 923–936. https://doi.org/10.1039/C9SC06497D

Zhang, J., Zhao, B., Liang, W., Zhou, G., Liang, Z., Wang, Y., Qu, J., Sun, Y., & Jiang, L. (2020). Three?Phase Electrolysis by Gold Nanoparticle on Hydrophobic Interface for Enhanced Electrochemical Nitrogen Reduction Reaction. Advanced Science, 7(22), 2002630. https://doi.org/10.1002/advs.202002630

Zhang, L., Mazouzi, Y., Salmain, M., Liedberg, B., & Boujday, S. (2020). Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosensors and Bioelectronics, 165, 112370. https://doi.org/10.1016/j.bios.2020.112370

Zhang, Q.-P., Sun, Y., Cheng, G., Wang, Z., Ma, H., Ding, S.-Y., Tan, B., Bu, J., & Zhang, C. (2020). Highly dispersed gold nanoparticles anchoring on post-modified covalent organic framework for catalytic application. Chemical Engineering Journal, 391, 123471. https://doi.org/10.1016/j.cej.2019.123471

Zhang, X., Zhang, Y., Zhang, W., Dai, Y., & Xia, F. (2021). Gold nanoparticles-deranged double network for Janus adhesive-tough hydrogel as strain sensor. Chemical Engineering Journal, 420, 130447. https://doi.org/10.1016/j.cej.2021.130447

Zheng, J., Cheng, X., Zhang, H., Bai, X., Ai, R., Shao, L., & Wang, J. (2021). Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews, 121(21), 13342–13453. https://doi.org/10.1021/acs.chemrev.1c00422

Authors

Salma Hamdan
salmahamdan@gmail.com (Primary Contact)
Bassam Al-Khouri
Rami Hariri
Hamdan, S., Al-Khouri, B., & Hariri, R. (2025). Immunomodulation Mechanism by Gold Nanoparticles for Cancer Therapy. Journal of Biomedical and Techno Nanomaterials, 2(2), 105–116. https://doi.org/10.70177/jbtn.v2i2.2024

Article Details