Development of Nanocellulose-Based Biomaterials from Agricultural Waste for Bone Tissue Regeneration Applications
Abstract
Agricultural waste has great potential to be used as biomaterial raw materials that can be used in medical applications, especially for bone tissue regeneration. Nanocellulose, which is produced from natural cellulose, offers good mechanical properties and high biocompatibility. This research aims to develop nanocellulose-based biomaterials from agricultural waste for bone regeneration applications. The purpose of this study is to explore the potential of agricultural waste, such as rice straw, peanut husks, and corn leaves, in producing high-quality nanocellulose that can be used for applications in the field of bone tissue regeneration. This study uses an experimental design with a laboratory approach. Agricultural waste is treated through nanocellulose extraction using certain chemical techniques. Material characterization was carried out using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), as well as biocompatibility tests using osteoblast cell cultures. The results show that rice straw produces nanocellulose with the highest cellulose content (65%) and has optimal tensile strength and degradation time for bone tissue applications. Peanut husks and corn leaves also show good results, although not as good as rice straw. Agricultural waste, especially rice straw, has great potential to be used as a raw material for nanocellulose that can be used in bone tissue regeneration applications. This research opens up opportunities to develop more sustainable and affordable biomaterials for medical applications.
Full text article
References
Ariaeenejad, S., Motamedi, E., & Salekdeh, G. H. (2022). Highly efficient removal of dyes from wastewater using nanocellulose from quinoa husk as a carrier for immobilization of laccase. Bioresource Technology, 349, 126833. https://doi.org/10.1016/j.biortech.2022.126833
Chen, J., Huang, M., & Kong, L. (2020). Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Applied Surface Science, 533, 147454. https://doi.org/10.1016/j.apsusc.2020.147454
Chen, S., Chen, Y., Li, D., Xu, Y., & Xu, F. (2021). Flexible and Sensitivity-Adjustable Pressure Sensors Based on Carbonized Bacterial Nanocellulose/Wood-Derived Cellulose Nanofibril Composite Aerogels. ACS Applied Materials & Interfaces, 13(7), 8754–8763. https://doi.org/10.1021/acsami.0c21392
Dominic, M., Joseph, R., Sabura Begum, P. M., Kanoth, B. P., Chandra, J., & Thomas, S. (2020). Green tire technology: Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding. Carbohydrate Polymers, 230, 115620. https://doi.org/10.1016/j.carbpol.2019.115620
Dorishetty, P., Balu, R., Athukoralalage, S. S., Greaves, T. L., Mata, J., De Campo, L., Saha, N., Zannettino, A. C. W., Dutta, N. K., & Choudhury, N. R. (2020). Tunable Biomimetic Hydrogels from Silk Fibroin and Nanocellulose. ACS Sustainable Chemistry & Engineering, 8(6), 2375–2389. https://doi.org/10.1021/acssuschemeng.9b05317
Ferreira-Neto, E. P., Ullah, S., Da Silva, T. C. A., Domeneguetti, R. R., Perissinotto, A. P., De Vicente, F. S., Rodrigues-Filho, U. P., & Ribeiro, S. J. L. (2020). Bacterial Nanocellulose/MoS2 Hybrid Aerogels as Bifunctional Adsorbent/Photocatalyst Membranes for in-Flow Water Decontamination. ACS Applied Materials & Interfaces, 12(37), 41627–41643. https://doi.org/10.1021/acsami.0c14137
Fourmann, O., Hausmann, M. K., Neels, A., Schubert, M., Nyström, G., Zimmermann, T., & Siqueira, G. (2021). 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 259, 117716. https://doi.org/10.1016/j.carbpol.2021.117716
Ge, X., Zhang, W., Song, F., Xie, B., Li, J., Wang, J., Wang, X., Zhao, J., & Cui, G. (2022). Single?Ion?Functionalized Nanocellulose Membranes Enable Lean?Electrolyte and Deeply Cycled Aqueous Zinc?Metal Batteries. Advanced Functional Materials, 32(26), 2200429. https://doi.org/10.1002/adfm.202200429
Hou, Y., Guan, Q.-F., Xia, J., Ling, Z.-C., He, Z., Han, Z.-M., Yang, H.-B., Gu, P., Zhu, Y., Yu, S.-H., & Wu, H. (2021). Strengthening and Toughening Hierarchical Nanocellulose via Humidity-Mediated Interface. ACS Nano, 15(1), 1310–1320. https://doi.org/10.1021/acsnano.0c08574
Hu, D., Ma, W., Zhang, Z., Ding, Y., & Wu, L. (2020). Dual Bio-Inspired Design of Highly Thermally Conductive and Superhydrophobic Nanocellulose Composite Films. ACS Applied Materials & Interfaces, 12(9), 11115–11125. https://doi.org/10.1021/acsami.0c01425
Huo, D., Chen, B., Meng, G., Huang, Z., Li, M., & Lei, Y. (2020). Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate. ACS Applied Materials & Interfaces, 12(45), 50713–50720. https://doi.org/10.1021/acsami.0c13828
Jiang, J., Zhu, Y., & Jiang, F. (2021). Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives. Carbohydrate Polymers, 267, 118188. https://doi.org/10.1016/j.carbpol.2021.118188
Kriechbaum, K., & Bergström, L. (2020). Antioxidant and UV-Blocking Leather-Inspired Nanocellulose-Based Films with High Wet Strength. Biomacromolecules, 21(5), 1720–1728. https://doi.org/10.1021/acs.biomac.9b01655
Lee, H., You, J., Jin, H.-J., & Kwak, H. W. (2020). Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: A comparison of nanofiber and nanocrystal. Carbohydrate Polymers, 232, 115771. https://doi.org/10.1016/j.carbpol.2019.115771
Levani?, J., Šenk, V. P., Nadrah, P., Poljanšek, I., Oven, P., & Haapala, A. (2020). Analyzing TEMPO-Oxidized Cellulose Fiber Morphology: New Insights into Optimization of the Oxidation Process and Nanocellulose Dispersion Quality. ACS Sustainable Chemistry & Engineering, 8(48), 17752–17762. https://doi.org/10.1021/acssuschemeng.0c05989
Liu, H., Xu, T., Cai, C., Liu, K., Liu, W., Zhang, M., Du, H., Si, C., & Zhang, K. (2022). Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocellulose?Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor. Advanced Functional Materials, 32(26), 2113082. https://doi.org/10.1002/adfm.202113082
Lu, P., Yang, Y., Liu, R., Liu, X., Ma, J., Wu, M., & Wang, S. (2020). Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydrate Polymers, 249, 116831. https://doi.org/10.1016/j.carbpol.2020.116831
Lu, Y., Yue, Y., Ding, Q., Mei, C., Xu, X., Wu, Q., Xiao, H., & Han, J. (2021). Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS Applied Materials & Interfaces, 13(42), 50281–50297. https://doi.org/10.1021/acsami.1c16828
Maturavongsadit, P., Narayanan, L. K., Chansoria, P., Shirwaiker, R., & Benhabbour, S. R. (2021). Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. ACS Applied Bio Materials, 4(3), 2342–2353. https://doi.org/10.1021/acsabm.0c01108
Nguyen, H.-L., Tran, T. H., Hao, L. T., Jeon, H., Koo, J. M., Shin, G., Hwang, D. S., Hwang, S. Y., Park, J., & Oh, D. X. (2021). Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications. Carbohydrate Polymers, 271, 118421. https://doi.org/10.1016/j.carbpol.2021.118421
Parnsubsakul, A., Ngoensawat, U., Wutikhun, T., Sukmanee, T., Sapcharoenkun, C., Pienpinijtham, P., & Ekgasit, S. (2020). Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Carbohydrate Polymers, 235, 115956. https://doi.org/10.1016/j.carbpol.2020.115956
Qin, Y., Mo, J., Liu, Y., Zhang, S., Wang, J., Fu, Q., Wang, S., & Nie, S. (2022). Stretchable Triboelectric Self?Powered Sweat Sensor Fabricated from Self?Healing Nanocellulose Hydrogels. Advanced Functional Materials, 32(27), 2201846. https://doi.org/10.1002/adfm.202201846
Sakuma, W., Yamasaki, S., Fujisawa, S., Kodama, T., Shiomi, J., Kanamori, K., & Saito, T. (2021). Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction. ACS Nano, 15(1), 1436–1444. https://doi.org/10.1021/acsnano.0c08769
Septevani, A. A., Rifathin, A., Sari, A. A., Sampora, Y., Ariani, G. N., Sudiyarmanto, & Sondari, D. (2020). Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydrate Polymers, 229, 115433. https://doi.org/10.1016/j.carbpol.2019.115433
Sinquefield, S., Ciesielski, P. N., Li, K., Gardner, D. J., & Ozcan, S. (2020). Nanocellulose Dewatering and Drying: Current State and Future Perspectives. ACS Sustainable Chemistry & Engineering, 8(26), 9601–9615. https://doi.org/10.1021/acssuschemeng.0c01797
Squinca, P., Bilatto, S., Badino, A. C., & Farinas, C. S. (2020). Nanocellulose Production in Future Biorefineries: An Integrated Approach Using Tailor-Made Enzymes. ACS Sustainable Chemistry & Engineering, 8(5), 2277–2286. https://doi.org/10.1021/acssuschemeng.9b06790
Sultana, T., Hossain, M., Rahaman, S., Kim, Y. S., Gwon, J.-G., & Lee, B.-T. (2021). Multi-functional nanocellulose-chitosan dressing loaded with antibacterial lawsone for rapid hemostasis and cutaneous wound healing. Carbohydrate Polymers, 272, 118482. https://doi.org/10.1016/j.carbpol.2021.118482
Wang, J., Xu, J., Zhu, S., Wu, Q., Li, J., Gao, Y., Wang, B., Li, J., Gao, W., Zeng, J., & Chen, K. (2021). Preparation of nanocellulose in high yield via chemi-mechanical synergy. Carbohydrate Polymers, 251, 117094. https://doi.org/10.1016/j.carbpol.2020.117094
Wang, Y., Li, Y., Zhang, Y., Zhang, Z., Li, Y., & Li, W. (2021). Nanocellulose aerogel for highly efficient adsorption of uranium (VI) from aqueous solution. Carbohydrate Polymers, 267, 118233. https://doi.org/10.1016/j.carbpol.2021.118233
Wu, C., McClements, D. J., He, M., Zheng, L., Tian, T., Teng, F., & Li, Y. (2021). Preparation and characterization of okara nanocellulose fabricated using sonication or high-pressure homogenization treatments. Carbohydrate Polymers, 255, 117364. https://doi.org/10.1016/j.carbpol.2020.117364
Xu, L., Meng, T., Zheng, X., Li, T., Brozena, A. H., Mao, Y., Zhang, Q., Clifford, B. C., Rao, J., & Hu, L. (2023). Nanocellulose?Carboxymethylcellulose Electrolyte for Stable, High?Rate Zinc?Ion Batteries. Advanced Functional Materials, 33(27), 2302098. https://doi.org/10.1002/adfm.202302098
Yang, J., Ma, C., Tao, J., Li, J., Du, K., Wei, Z., Chen, C., Wang, Z., Zhao, C., & Ma, M. (2020). Optimization of polyvinylamine-modified nanocellulose for chlorpyrifos adsorption by central composite design. Carbohydrate Polymers, 245, 116542. https://doi.org/10.1016/j.carbpol.2020.116542
Yang, W., Zhu, Y., Liu, T., Puglia, D., Kenny, J. M., Xu, P., Zhang, R., & Ma, P. (2023). Multiple Structure Reconstruction by Dual Dynamic Crosslinking Strategy Inducing Self?Reinforcing and Toughening the Polyurethane/Nanocellulose Elastomers. Advanced Functional Materials, 33(12), 2213294. https://doi.org/10.1002/adfm.202213294
Yuan, H., Chen, L., & Hong, F. F. (2020). A Biodegradable Antibacterial Nanocomposite Based on Oxidized Bacterial Nanocellulose for Rapid Hemostasis and Wound Healing. ACS Applied Materials & Interfaces, 12(3), 3382–3392. https://doi.org/10.1021/acsami.9b17732
Zeng, Z., Wang, C., Siqueira, G., Han, D., Huch, A., Abdolhosseinzadeh, S., Heier, J., Nüesch, F., Zhang, C. (John), & Nyström, G. (2020). Nanocellulose?MXene Biomimetic Aerogels with Orientation?Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 7(15), 2000979. https://doi.org/10.1002/advs.202000979
Zeng, Z., Wu, T., Han, D., Ren, Q., Siqueira, G., & Nyström, G. (2020). Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 14(3), 2927–2938. https://doi.org/10.1021/acsnano.9b07452
Zheng, C., Lu, K., Lu, Y., Zhu, S., Yue, Y., Xu, X., Mei, C., Xiao, H., Wu, Q., & Han, J. (2020). A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydrate Polymers, 250, 116905. https://doi.org/10.1016/j.carbpol.2020.116905
Zhou, Z., Song, Q., Huang, B., Feng, S., & Lu, C. (2021). Facile Fabrication of Densely Packed Ti3 C2 MXene/Nanocellulose Composite Films for Enhancing Electromagnetic Interference Shielding and Electro-/Photothermal Performance. ACS Nano, 15(7), 12405–12417. https://doi.org/10.1021/acsnano.1c04526
Zhu, S., Sun, H., Lu, Y., Wang, S., Yue, Y., Xu, X., Mei, C., Xiao, H., Fu, Q., & Han, J. (2021). Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Applied Materials & Interfaces, 13(49), 59142–59153. https://doi.org/10.1021/acsami.1c19482
Authors
Copyright (c) 2024 Chen Mei, Zhang Li, Zhou Hui

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.