Development of Composite Biomaterial Based Dental Implants to Improve Osseointegration
Abstract
Dental implant technologies face significant challenges in achieving optimal osseointegration, critical for successful long-term patient outcomes. Traditional implant materials demonstrate limitations in biological performance, cellular interactions, and healing processes. Developing advanced biomaterial strategies capable of dynamically interacting with physiological environments represents crucial scientific innovation. Research objectives aimed to develop sophisticated composite biomaterial dental implants with enhanced osseointegration capabilities through innovative surface modifications and strategic ceramic reinforcement approaches. Experimental methodology employed comprehensive research design integrating materials science, cellular biology, and advanced computational modeling. Experimental protocols included precision biomaterial synthesis, nanoscale surface engineering, in vitro cellular response assessments, and sophisticated characterization techniques. Experimental results demonstrated statistically significant improvements in osseointegration rates, cellular attachment, and mechanical strength across developed composite biomaterial variants. Hierarchical surface modifications incorporating zirconia and hydroxyapatite reinforcements exhibited superior performance compared to traditional implant technologies. Conclusive findings validate innovative composite biomaterial approaches as transformative strategies for dental implant development, offering potential for accelerated healing, improved cellular interactions, and personalized medical interventions.
Full text article
References
Abdul Rahim, M. A. H., Samsurrijal, S. F., Abdullah, A. A.-A., & Mohd Noor, S. N. F. (2024). Development and physiochemical assessment of graphene-bioactive glass-P(3HB-co-4HB) composite scaffold as prospect biomaterial for wound healing. Biomedical Materials, 19(4), 045040. https://doi.org/10.1088/1748-605X/ad5632
Ahmed Ismail, K., El Askary, A., Farea, M. O., Awwad, N. S., Ibrahium, H. A., Eid Moustapha, M., & Menazea, A. A. (2022). Perspectives on composite films of chitosan-based natural products (Ginger, Curcumin, and Cinnamon) as biomaterials for wound dressing. Arabian Journal of Chemistry, 15(4), 103716. https://doi.org/10.1016/j.arabjc.2022.103716
Alvarez-Carrizal, R. P., Rodriguez-Garcia, J. A., Cortes-Hernandez, D. A., Esparza-Vazquez, S. J., & Rocha-Rangel, E. (2021). Manufacture of Al2O3/Ti composite by aluminum bonding reaction for their use as a biomaterial. Advances in Materials Research, 10(4), 331–341. https://doi.org/10.12989/AMR.2021.10.4.331
Ansah, I. B., Leming, M., Lee, S. H., Yang, J.-Y., Mun, C., Noh, K., An, T., Lee, S., Kim, D.-H., Kim, M., Im, H., & Park, S.-G. (2023). Label-free detection and discrimination of respiratory pathogens based on electrochemical synthesis of biomaterials-mediated plasmonic composites and machine learning analysis. Biosensors and Bioelectronics, 227, 115178. https://doi.org/10.1016/j.bios.2023.115178
Aradhyula, T. V., Bian, D., Reddy, A. B., Jeng, Y.-R., Chavali, M., Sadiku, E. R., & Malkapuram, R. (2020). Compounding and the mechanical properties of catla fish scales reinforced-polypropylene composite – from biowaste to biomaterial. Advanced Composite Materials, 29(2), 115–128. https://doi.org/10.1080/09243046.2019.1647981
Chircov, C., Ioni??, D.-A., Sîrmon, A.-M., Neac?u, I. A., & Ficai, A. (2023). Natural, synthetic, and hybrid and composite biomaterials for neural tissue engineering. In Biomaterials for Neural Tissue Engineering (pp. 21–58). Elsevier. https://doi.org/10.1016/B978-0-323-90554-1.00008-2
Chozhanathmisra, M., Murugesan, A., Senthil Kumar, P., Loganathan, M., Sampath, G., Sedhu, N., & Rangasamy, G. (2024). Fabrication of a novel biomaterial of mono-layer of halloysite nanotube-magnesium oxide/ ?-tricalcium phosphate composite on implant substrate: Structural and biological properties. Ceramics International, 50(4), 6703–6712. https://doi.org/10.1016/j.ceramint.2023.12.009
D’Amora, U., Soriente, A., Ronca, A., Scialla, S., Perrella, M., Manini, P., Phua, J. W., Ottenheim, C., Di Girolamo, R., Pezzella, A., Raucci, M. G., & Ambrosio, L. (2022). Eumelanin from the Black Soldier Fly as Sustainable Biomaterial: Characterisation and Functional Benefits in Tissue-Engineered Composite Scaffolds. Biomedicines, 10(11), 2945. https://doi.org/10.3390/biomedicines10112945
De Andrade, R., Casagrande Paim, T., Bertaco, I., Naasani, L. S., Buchner, S., Ková?ík, T., Hájek, J., & Wink, M. R. (2023). Hierarchically porous bioceramics based on geopolymer-hydroxyapatite composite as a novel biomaterial: Structure, mechanical properties and biocompatibility evaluation. Applied Materials Today, 33, 101875. https://doi.org/10.1016/j.apmt.2023.101875
Debons, N., Matsumoto, K., Hirota, N., Coradin, T., Ikoma, T., & Aimé, C. (2021). Magnetic Field Alignment, a Perspective in the Engineering of Collagen-Silica Composite Biomaterials. Biomolecules, 11(5), 749. https://doi.org/10.3390/biom11050749
Dewey, M. J., Chang, R. S. H., Nosatov, A. V., Janssen, K., Crotts, S. J., Hollister, S. J., & Harley, B. A. C. (2023). Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial. Acta Biomaterialia, 172, 249–259. https://doi.org/10.1016/j.actbio.2023.10.005
Dewey, M. J., Milner, D. J., Weisgerber, D., Flanagan, C. L., Rubessa, M., Lotti, S., Polkoff, K. M., Crotts, S., Hollister, S. J., Wheeler, M. B., & Harley, B. A. C. (2022). Repair of critical-size porcine craniofacial bone defects using a collagen–polycaprolactone composite biomaterial. Biofabrication, 14(1), 014102. https://doi.org/10.1088/1758-5090/ac30d5
Evon, P., Labonne, L., Padoan, E., Vaca-Garcia, C., Montoneri, E., Boero, V., & Negre, M. (2021). A New Composite Biomaterial Made from Sunflower Proteins, Urea, and Soluble Polymers Obtained from Industrial and Municipal Biowastes to Perform as Slow Release Fertiliser. Coatings, 11(1), 43. https://doi.org/10.3390/coatings11010043
Guo, Z.-X., Zhang, Z., Yan, J.-F., Xu, H.-Q., Wang, S.-Y., Ye, T., Han, X.-X., Wang, W.-R., Wang, Y., Gao, J.-L., Niu, L.-N., Chang, J., & Jiao, K. (2023). A biomaterial-based therapy using a sodium hyaluronate/bioglass composite hydrogel for the treatment of oral submucous fibrosis. Acta Biomaterialia, 157, 639–654. https://doi.org/10.1016/j.actbio.2022.12.006
Huang, W., Li, Z., Xiong, J., Zhang, C., Gan, J., Fu, Q., Li, Y., Wen, R., He, F., & Shi, H. (2024). Fabrication of 3D-printed Ca2Sr(PO4)2-based composite ceramic scaffolds as potential bone regenerative biomaterials. Ceramics International, 50(21), 41703–41710. https://doi.org/10.1016/j.ceramint.2024.08.021
Khan, T., Hameed, S., Abdullah, N., & Haque, M. Z. U. (2024). Development of composite biomaterial using Resin/Eggshell/Calcium Sulfate Hemihydrate for orthopedic applications. 020002. https://doi.org/10.1063/5.0214542
Kostag, M., & El Seoud, O. A. (2021). Sustainable biomaterials based on cellulose, chitin and chitosan composites—A review. Carbohydrate Polymer Technologies and Applications, 2, 100079. https://doi.org/10.1016/j.carpta.2021.100079
Lo Presti, M., Rizzo, G., Farinola, G. M., & Omenetto, F. G. (2021). Bioinspired Biomaterial Composite for All?Water?Based High?Performance Adhesives. Advanced Science, 8(16), 2004786. https://doi.org/10.1002/advs.202004786
Maduka, C. V., Makela, A. V., Tundo, A., Ural, E., Stivers, K. B., Kuhnert, M. M., Alhaj, M., Hoque Apu, E., Ashammakhi, N., Hankenson, K. D., Narayan, R., Elisseeff, J. H., & Contag, C. H. (2024). Regulating the proinflammatory response to composite biomaterials by targeting immunometabolism. Bioactive Materials, 40, 64–73. https://doi.org/10.1016/j.bioactmat.2024.05.046
Manesa, K. C., Kebede, T. G., Dube, S., & Nindi, M. M. (2022). Fabrication and Characterization of Sericin-PVA Composite Films from Gonometa postica , Gonometa rufobrunnea , and Argema mimosae: Potentially Applicable in Biomaterials. ACS Omega, 7(23), 19328–19336. https://doi.org/10.1021/acsomega.2c00897
Molino, P. J., Will, J., Daikuara, L. Y., Harris, A. R., Yue, Z., Dinoro, J., Winberg, P., & Wallace, G. G. (2021). Fibrinogen, collagen, and transferrin adsorption to poly(3,4-ethylenedioxythiophene)-xylorhamno-uronic glycan composite conducting polymer biomaterials for wound healing applications. Biointerphases, 16(2), 021003. https://doi.org/10.1116/6.0000708
Montaina, L., Carcione, R., Pescosolido, F., Montalto, M., Battistoni, S., & Tamburri, E. (2023). Three-Dimensional-Printed Polyethylene Glycol Diacrylate-Polyaniline Composites by In Situ Aniline Photopolymerization: An Innovative Biomaterial for Electrocardiogram Monitoring Systems. ACS Applied Electronic Materials, 5(1), 164–172. https://doi.org/10.1021/acsaelm.2c01181
Motealleh, A., Dorri, P., & Kehr, N. S. (2020). Injectable polymer/nanomaterial composites for the fabrication of three-dimensional biomaterial scaffolds. Biomedical Materials, 15(4), 045021. https://doi.org/10.1088/1748-605X/ab82ea
Motealleh, A., Dorri, P., & Kehr, N. S. (2023a). Corrigendum: Injectable polymer/nanomaterial composites for the fabrication of three-dimensional biomaterial scaffolds (2020 Biomed. Mater. 15 045021). Biomedical Materials, 18(5), 059506. https://doi.org/10.1088/1748-605X/aceba7
Motealleh, A., Dorri, P., & Kehr, N. S. (2023b). Corrigendum: Injectable polymer/nanomaterial composites for the fabrication of three-dimensional biomaterial scaffolds (2020 Biomed. Mater. 15 045021). Biomedical Materials, 18(5), 059506. https://doi.org/10.1088/1748-605X/aceba7
Panebianco, C. J., Rao, S., Hom, W. W., Meyers, J. H., Lim, T. Y., Laudier, D. M., Hecht, A. C., Weir, M. D., Weiser, J. R., & Iatridis, J. C. (2022). Genipin-crosslinked fibrin seeded with oxidized alginate microbeads as a novel composite biomaterial strategy for intervertebral disc cell therapy. Biomaterials, 287, 121641. https://doi.org/10.1016/j.biomaterials.2022.121641
Patel, R., Babaei-Ghazvini, A., Dunlop, M. J., & Acharya, B. (2024). Biomaterials-based concrete composites: A review on biochar, cellulose and lignin. Carbon Capture Science & Technology, 12, 100232. https://doi.org/10.1016/j.ccst.2024.100232
Sharifi, S., Zaheri Khosroshahi, A., Maleki Dizaj, S., & Rezaei, Y. (2021). Preparation, Physicochemical Assessment and the Antimicrobial Action of Hydroxyapatite–Gelatin/Curcumin Nanofibrous Composites as a Dental Biomaterial. Biomimetics, 7(1), 4. https://doi.org/10.3390/biomimetics7010004
Shen, T., Dong, H., & Wang, P. (2024). Research progress on nanocellulose and its composite materials as orthopedic implant biomaterials. Alexandria Engineering Journal, 87, 575–590. https://doi.org/10.1016/j.aej.2024.01.003
Song, G., Delroisse, J., Schoenaers, D., Kim, H., Nguyen, T. C., Horbelt, N., Leclère, P., Hwang, D. S., Harrington, M. J., & Flammang, P. (2020). Structure and composition of the tunic in the sea pineapple Halocynthia roretzi: A complex cellulosic composite biomaterial. Acta Biomaterialia, 111, 290–301. https://doi.org/10.1016/j.actbio.2020.04.038
Sudhisha, V., Agilan, P., Cheranmadevi, P., & Rajendran, N. (2022). Electropolymerized PEDOT/TNTA hybrid composite: A promising biomaterial for orthopaedic application. Applied Surface Science, 595, 153534. https://doi.org/10.1016/j.apsusc.2022.153534
Sumiyoshi, H., Nakao, S., Endo, H., Yanagawa, T., Nakano, Y., Okamura, Y., Kawaguchi, A. T., & Inagaki, Y. (2020). A Novel Composite Biomaterial Made of Jellyfish and Porcine Collagens Accelerates Dermal Wound Healing by Enhancing Reepithelization and Granulation Tissue Formation in Mice. Advances in Wound Care, 9(6), 295–311. https://doi.org/10.1089/wound.2019.1014
Tkachuk, V. A., Lyutova, E. S., Buzaev, A. A., Borilo, L. P., & Spivakova, L. N. (2024). OBTAINING OF TiO2-SiO2-P2O5/ZnO COMPOSITES, INVESTIGATION OF THEIR PROPERTIES AND POSSIBILITY OF APPLICATION AS A BIOMATERIAL. ChemChemTech, 67(5), 70–76. https://doi.org/10.6060/ivkkt.20246705.6953
Wang, F., Guo, C., Yang, Q., Li, C., Zhao, P., Xia, Q., & Kaplan, D. L. (2021). Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomaterialia, 121, 180–192. https://doi.org/10.1016/j.actbio.2020.11.037
Widodo, R. D., Rusiyanto, R., Kriswanto, K., Naryanto, R. F., Boy, A. M., Fitriyana, D. F., Siregar, J. P., Cionita, T., Mamat, R. B., Jaafar, J., & Ammarullah, M. I. (2024). Investigation of Elaeocarpus ganitrus seed (EGs) powder as a sustainable composite biomaterial: Effects of particle size on the mechanical, frictional, and thermal properties for potential biomedical applications. AIP Advances, 14(11), 115210. https://doi.org/10.1063/5.0228259
Wong, H.-L., Tsang, C.-Y., & Beyer, S. (2023). Metal–Organic Frameworks (MOFs) and Their Composites as Emerging Biomaterials for Osteoarthritis Treatment. Biomimetics, 8(1), 97. https://doi.org/10.3390/biomimetics8010097
Xiao, J., Hai, L., Yang, K., Luo, Y., Wang, Z., Li, J., Ou, C., Wang, L., Deng, L., & He, D. (2023). Self-enhanced ROS generation by responsive co-delivery of H2O2 and O2 based on a versatile composite biomaterial for hypoxia-irrelevant multimodal antibiofilm therapy. Chemical Engineering Journal, 465, 142958. https://doi.org/10.1016/j.cej.2023.142958
Xing, M. (2021). Compatibility of Composite Biomaterials in Sports Injury Repair. Advances in Materials Science and Engineering, 2021(1), 4954325. https://doi.org/10.1155/2021/4954325
Xue, J., Luo, F., Zhang, Y., Fang, Y., & Jiang, X. (2023). Strengthening Mechanisms of Ti–Mg Composite for Biomaterials: A Review. Advanced Engineering Materials, 25(21), 2300620. https://doi.org/10.1002/adem.202300620
Yu, S., Chi, H., Li, P., Guo, B., Yu, Z., Xu, Z., Liang, P., Zhang, Z., Guo, Y., & Ren, L. (2024). Interpenetrating phases composites Ti6Al4V/Zn as partially degradable biomaterials to improve bone-implant properties. Additive Manufacturing, 93, 104411. https://doi.org/10.1016/j.addma.2024.104411
Authors
Copyright (c) 2024 Vicheka Rith, Vann Sok, Ravi Dara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.