Abstract
Plasmodium is a parasite that causes malaria in humans. Various Plasmodium species have differences in their life cycles and growth, which influence the clinical characteristics and management of malaria. This article explains the differences in the life and growth cycles of the six Plasmodium species most commonly found in humans, namely Plasmodium knowlesi, Plasmodium inui, Plasmodium vivax, Plasmodium malariae, Plasmodium falciparum, and Plasmodium ovale. Each species has differences in its life cycle, including pre-erythrocytic, erythrocytic, and extracellular duration. In addition, these differences also influence clinical symptoms, disease severity, and response to treatment. A thorough understanding of these differences is important for accurate diagnosis and effective treatment of malaria.
Full text article
References
Angelika, P., Kurniawan, F., & Santi, B. (2021). MALARIA KNOWLESI PADA MANUSIA. Damianus Journal of Medicine, 20, 72–88. https://doi.org/10.25170/djm.v20i1.1805
Avisha, A. N., & Utami, P. D. (2018). Pengaruh Pemberian Ekstrak Rimpang Temulawak (Curcuma xanthorrhiza Roxb.) Terhadap Jumlah Eritrosit Mencit (Mus musculus L.) Jantan BALB/c yang Diinokulasi Plasmodium Berghei Anka. Hang Tuah Medical Journal, 15(2), Article 2.
Baird, J. K., Purnomo, null, & Masbar, S. (1990). Plasmodium ovale in Indonesia. The Southeast Asian Journal of Tropical Medicine and Public Health, 21(4), 541–544.
Bousema, T., & Drakeley, C. (2011). Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clinical Microbiology Reviews, 24(2), 377– 410. https://doi.org/10.1128/CMR.00051-10
Chrismayanti, N., & Veronica, E. (2020). Potensi Daun Kastuba (Euphorbia Pulcherrima) Sebagai Antimalaria Plasmodium Falciparum. Hang Tuah Medical Journal, 18, 1–15. https://doi.org/10.30649/htmj.v18i1.466
Coatney, G. R., Chin, W., Contacos, P. G., & King, H. K. (1966). Plasmodium inui, a quartan-type malaria parasite of Old World monkeys transmissible to man. The Journal of Parasitology, 52(4), 660–663.
Facer, C. A., & Rouse, D. (1991). Spontaneous splenic rupture due to Plasmodium ovale malaria. Lancet (London, England), 338(8771), 896. https://doi.org/10.1016/0140-6736(91)91562-9
Galinski, M. R., & Barnwell, J. W. (2008). Plasmodium vivax: Who cares? Malaria Journal, 7 Suppl 1(Suppl 1), S9. https://doi.org/10.1186/1475-2875-7-S1- S9
Jeremiah, S., Janagond, A. B., & Parija, S. C. (2014). Challenges in diagnosis of Plasmodium knowlesi infections. Tropical Parasitology, 4(1), 25–30. https://doi.org/10.4103/2229-5070.129156
Langhorne, J., Ndungu, F. M., Sponaas, A.-M., & Marsh, K. (2008). Immunity to malaria: More questions than answers. Nature Immunology, 9(7), 725–732. https://doi.org/10.1038/ni.f.205
Liew, J. W. K., Bukhari, F. D. M., Jeyaprakasam, N. K., Phang, W. K., Vythilingam, I., & Lau, Y. L. (2021). Natural Plasmodium inui Infections in Humans and Anopheles cracens Mosquito, Malaysia. Emerging Infectious Diseases, 27(10), 2700–2703. https://doi.org/10.3201/eid2710.210412
Mendis, K., Sina, B. J., Marchesini, P., & Carter, R. (2001). The neglected burden of Plasmodium vivax malaria. The American Journal of Tropical Medicine and Hygiene, 64(1-2 Suppl), 97–106. https://doi.org/10.4269/ajtmh.2001.64.97
Okafor, C. N., & Finnigan, N. A. (2024). Plasmodium ovale Malaria. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK519021/
Singh, B., & Daneshvar, C. (2013). Human infections and detection of Plasmodium knowlesi. Clinical Microbiology Reviews, 26(2), 165–184. https://doi.org/10.1128/CMR.00079-12
Tomar, L. R., Giri, S., Bauddh, N. K., & Jhamb, R. (2015). Complicated malaria: A rare presentation of Plasmodium ovale. Tropical Doctor, 45(2), 140–142. https://doi.org/10.1177/0049475515571989
Nourani, L., Mehrizi, A. A., Pirahmadi, S., Pourhashem, Z., Asadollahi, E., & Jahangiri, B. (2023). CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector. Infection, Genetics and Evolution, 109, 105419. https://doi.org/10.1016/j.meegid.202 3.105419
Oringanje, C., Delacruz, L. R., Han, Y., Luckhart, S., & Riehle, M. A. (2021). Overexpression of Activated AMPK in the Anopheles stephensi Midgut Impacts Mosquito Metabolism, Reproduction and Plasmodium Resistance. Genes, 12(1), 119. https://doi.org/10.3390/genes120101 19
Sebanyak 94.610 Kasus Malaria Terjadi di Indonesia pada 2021. (n.d.). Retrieved March 16, 2024, from https://databoks.katadata.co.id/datapublish/2021/12/20/sebanyak-94610-kasus- malaria- terjadi-di-indonesia-pada-2021
Wamaket, N., Khamprapa, O., Chainarin, S., Thamsawet, P., Ninsaeng, U., Thongsalee, S., Suwan, V., Sakolvaree, J., Takhampunya, R., Davidson, S. A., McCardle, P. W., Sa- angchai, P., Mukaka, M., Kiattibutr, K., Khamsiriwatchara, A., Nguitragool, W., Sattabongkot, J., Sirichaisinthop, J., & Kobylinski, K. C. (2021). Anopheles bionomics in a malaria endemic area of southern Thailand. Parasites & Vectors, 14(1),378.https://doi.org/10.1186/s13071021- 04870-8
Zhang, C., Xiao, B., Jiang, Y., Zhao, Y., Li, Z., Gao, H., Ling, Y., Wei, J., Li, S., Lu, M., Su, X., Cui, H., & Yuan, J. (2014). Efficient Editing of Malaria Parasite Genome Using the CRISPR/Cas9 System. mBio, 5(4), e01414-14. https://doi.org/10.1128/mBio.01414- 14
Authors
Copyright (c) 2024 Lidiya Fatmaningsih, Nadia Azhar Samasta, Linda Octa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.