Virtual Reality in Creative Education: An Experimental Study on Engagement and Concept Mastery
Abstract
The integration of immersive technologies into educational settings has introduced new possibilities for enhancing creativity, engagement, and understanding of abstract concepts. Virtual Reality (VR), as one of the most advanced digital tools, offers interactive three-dimensional environments that can transform traditional teaching approaches. This study aims to examine the effects of VR-based learning on student engagement and concept mastery within creative education courses. An experimental research design was implemented with 80 undergraduate students randomly assigned to an experimental group using VR applications and a control group using conventional multimedia. The intervention focused on design-thinking modules over a six-week period. Data were collected using engagement observation checklists, concept mastery tests, and post-intervention questionnaires, and analyzed through descriptive and inferential statistics. Results revealed that the experimental group demonstrated significantly higher engagement levels and achieved better scores in conceptual understanding than the control group. Students reported that VR facilitated exploration, provided a more stimulating learning environment, and encouraged active participation in problem-solving activities.
Full text article
References
Alomar, B., Trabelsi, Z., Qayyum, T., & Ambali Parambil, M. M. (2024). AI and Network Security Curricula: Minding the Gap. IEEE Global Eng. Edu. Conf., EDUCON. IEEE Global Engineering Education Conference, EDUCON. Scopus. https://doi.org/10.1109/EDUCON60312.2024.10578588
Azevedo, B. F., Pacheco, M. F., Fernandes, F. P., & Pereira, A. I. (2024). Dataset of mathematics learning and assessment of higher education students using the MathE platform. Data in Brief, 53. Scopus. https://doi.org/10.1016/j.dib.2024.110236
BenMessaoud, F., Bolchini, D., Ash, E., & Tseng, C.-M. (2023). FazBoard: An AI-Educational Hybrid Teaching and Learning System. In Arai K. (Ed.), Lect. Notes Networks Syst.: Vol. 813 LNNS (pp. 305–315). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-47454-5_23
Chen Q. & Li J. (Eds.). (2021). Asia Pacific Web and Web-Age Information Management Joint International Conference on Web and Big Data, APWeb-WAIM 2020 in conjunction with 3rd International Workshop on Knowledge Graph Management and Applications, KGMA 2020, 2nd International Workshop on Semi-structured Big Data Management and Applications, SemiBDMA 2020 and 1st International Workshop on Deep Learning in Large-scale Unstructured Data Analytics, DeepLUDA 2020. Communications in Computer and Information Science, 1373 CCIS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107345604&partnerID=40&md5=b0fce28b324913f171ebf763d3963ec7
Cristea, A. I., Alamri, A., Kayama, M., Stewart, C., Alshehri, M., & Shi, L. (2018). Earliest predictor of dropout in MOOCs: A longitudinal study of futurelearn courses. In Andersson B., Johansson B., Barry C., Lang M., Linger H., & Schneider C. (Eds.), Proc. Int. Conf. Inf. Syst. Dev.: Des. Digit., ISD. Association for Information Systems; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086228712&partnerID=40&md5=f79d263fbbba4dbf85101d84fba5b3f3
Dunagan, L., & Larson, D. A. (2021). Alignment of Competency-Based Learning and Assessment to Adaptive Instructional Systems. In Sottilare R.A. & Schwarz J. (Eds.), Lect. Notes Comput. Sci.: Vol. 12792 LNCS (pp. 537–549). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-030-77857-6_38
Efrianova, V., Yaakob, M., Salameh, A. A., Hussin, K. C., & Zaki, N. A. M. (2024). Formative Assessment of Student’s Academic Achievements in Mobile Learning Environments. International Journal of Interactive Mobile Technologies, 18(11), 52–63. Scopus. https://doi.org/10.3991/IJIM.V18I11.49045
Fessl, A., Wertner, A., & Pammer-Schindler, V. (2018). Challenges in developing automatic learning guidance in relation to an information literacy curriculum. In Fessl A., Thalmann S., d’Aquin M., Holtz P., & Dietze S. (Eds.), CEUR Workshop Proc. (Vol. 2209). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055702175&partnerID=40&md5=e1f06a416a8acdef537b17e46b195229
Gardner, J., & Brooks, C. (2018). Student success prediction in MOOCs. User Modeling and User-Adapted Interaction, 28(2), 127–203. Scopus. https://doi.org/10.1007/s11257-018-9203-z
Hamiz, M., Bakri, M., Kamaruddin, N., & Mohamed, A. (2018). Assessment analytic theoretical framework based on learners’ continuous learning improvement. Indonesian Journal of Electrical Engineering and Computer Science, 11(2), 682–687. Scopus. https://doi.org/10.11591/ijeecs.v11.i2.pp682-687
Karanth, D., Abu Arqub, S., & Dolce, C. (2024). The applications of digital technology in postgraduate orthodontic education. Seminars in Orthodontics, 30(4), 436–442. Scopus. https://doi.org/10.1053/j.sodo.2024.03.003
Krechetov, I., & Romanenko, V. (2020). Adaptive learning technologies in TUSUR University. In van der Veen J., van Hattum-Janssen N., Jarvinen H.-M., de Laet T., & Ten Dam I. (Eds.), SEFI Annu. Conf. Engag. Eng. Educ., Proc. (pp. 269–276). European Society for Engineering Education (SEFI); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107186449&partnerID=40&md5=863a112b5ae574832cda583b6e1a0b08
Liu, H., Malone, N., Yedjou, C., Chadwick, R., Haag, J., & Spector, M. (2024). Automating Formative Assessment for STEM Courses in Hybrid Learning Environments. IEEE Global Eng. Edu. Conf., EDUCON. IEEE Global Engineering Education Conference, EDUCON. Scopus. https://doi.org/10.1109/EDUCON60312.2024.10578901
Molnár, G., & Nagy, E. (2025). Current Issues in Effective Learning: Methodological and Technological Challenges and Opportunities Based on Modern ICT and Artificial Intelligence. In Tur?áni M. (Ed.), EAI/Springer Inno. Comm. Comp. (pp. 1–11). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-81261-3_1
Moltudal, S. H., Krumsvik, R. J., & Høydal, K. L. (2022). Adaptive Learning Technology in Primary Education: Implications for Professional Teacher Knowledge and Classroom Management. Frontiers in Education, 7. Scopus. https://doi.org/10.3389/feduc.2022.830536
Nagy, E., Sik, D., Biczo, Z., Zimányi, K., Pörzse, G., & Molnár, G. (2024). Advanced Digital and Artificial Intelligence-Based Solutions for Interactive, Collaborative Learning Support. CANDO-EPE - Proc.: IEEE Int. Conf. Workshop Obuda Electr. Power Eng., 103–107. Scopus. https://doi.org/10.1109/CANDO-EPE65072.2024.10772869
Nutalapati, H., Velmurugan, S., & Tiglao, N. M. (2024). Coding Buddy: An Adaptive AI-Powered Platform for Personalized Learning. Int. Symp. Networks, Comput. Commun., ISNCC. 2024 International Symposium on Networks, Computers and Communications, ISNCC 2024. Scopus. https://doi.org/10.1109/ISNCC62547.2024.10759044
Park, E., Ifenthaler, D., & Clariana, R. B. (2023). Adaptive or adapted to: Sequence and reflexive thematic analysis to understand learners’ self-regulated learning in an adaptive learning analytics dashboard. British Journal of Educational Technology, 54(1), 98–125. Scopus. https://doi.org/10.1111/bjet.13287
Quigley, D., Caccamise, D., Weatherley, J., & Foltz, P. (2020). Exploring video engagement in an intelligent tutoring system. In Sottilare R.A. & Schwarz J. (Eds.), Lect. Notes Comput. Sci.: Vol. 12214 LNCS (pp. 519–530). Springer; Scopus. https://doi.org/10.1007/978-3-030-50788-6_38
Quijano-Cabezas, P. A., Duque-Méndez, N., & Jiménez-Builes, J. A. (2024). Data Generation Strategies for the Application of Adaptive Learning Analytics. In Duque-Méndez N.D., Aristizábal-Quintero L.A., Orozco-Alzate M., & Aguilar J. (Eds.), Commun. Comput. Info. Sci.: Vol. 2209 CCIS (pp. 193–210). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-75236-0_15
Quirk, M., & Chumley, H. (2018). The adaptive medical curriculum: A model for continuous improvement. Medical Teacher, 40(8), 786–790. Scopus. https://doi.org/10.1080/0142159X.2018.1484896
Raj, N. S., Prasad, S., Harish, P., Boban, M., & Cheriyedath, N. (2021). Early Prediction of At-Risk Students in a Virtual Learning Environment Using Deep Learning Techniques. In Sottilare R.A. & Schwarz J. (Eds.), Lect. Notes Comput. Sci.: Vol. 12793 LNCS (pp. 110–120). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-030-77873-6_8
Saddam, H. M. I., & Hasan, G. (2024). The Best of Way of using AI Technology in Designing Technical Education Curriculum in Meeting Future Industry Demands: Smart Way. Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE, 1403–1406. Scopus. https://doi.org/10.1109/ICACITE60783.2024.10617225
Saeed, M. M. A., Saeed, R. A., Ahmed, Z. E., Gaid, A. S. A., & Mokhtar, R. A. (2024). AI technologies in engineering education. In AI-Enhanc. Teach. Methods (pp. 61–87). IGI Global; Scopus. https://doi.org/10.4018/979-8-3693-2728-9.ch003
Saul, K., Howard, A. K. T., Webster, Z., & Spencer, D. (2022). An Adaptive Learning Engineering Mechanics Curricular Sequence. ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138247314&partnerID=40&md5=fe8db267dd6e549c026dfc4e39c468f3
Seeling, P., McGarry, M. P., & Johnson, M. (2023). Reveal Online Learning Clickstream Data to Provide Actionable Intelligence. Proc. Front. Educ. Conf. FIE. Proceedings - Frontiers in Education Conference, FIE. Scopus. https://doi.org/10.1109/FIE58773.2023.10343069
Singh, C., & Pandey, A. (2019). Analysing trends in student’s performance across maharashtra through non-adaptive and adaptive online assessments based on the underlying framework of classical test and item response theory. In Jain L.C., Johri P., & Balas V.E. (Eds.), Adv. Intell. Sys. Comput. (Vol. 847, pp. 305–325). Springer Verlag; Scopus. https://doi.org/10.1007/978-981-13-2254-9_27
Thankachan, K. (2018). Adaptive Learning. Proc. Int. Conf. Inven. Comput. Inf., ICICI, 705–710. Scopus. https://doi.org/10.1109/ICICI.2017.8365227
Zhang, N., Biswas, G., Chiu, J. L., & McElhaney, K. W. (2019). Analyzing students’ design solutions in an NGSS-aligned earth sciences curriculum. In Isotani S., Millán E., Ogan A., McLaren B., Hastings P., & Luckin R. (Eds.), Lect. Notes Comput. Sci.: Vol. 11625 LNAI (pp. 532–543). Springer Verlag; Scopus. https://doi.org/10.1007/978-3-030-23204-7_44
Zhu, Q., & Wang, M. (2020). Team-based mobile learning supported by an intelligent system: Case study of STEM students. Interactive Learning Environments, 28(5), 543–559. Scopus. https://doi.org/10.1080/10494820.2019.1696838