AI-Augmented Creative Writing: Evaluating Machine-Human Collaboration in Narrative Innovation

Ardi Azhar Dara (1), Zhang Li (2), Wang Jing (3)
(1) Institut Teknologi Sepuluh November, Indonesia,
(2) Peking University, China,
(3) Nanjing University, China

Abstract

This study examines how artificial intelligence (AI) can augment human creativity in the field of narrative writing through a collaborative approach. The research addresses the growing influence of AI-based tools in creative industries and the need to understand their role in enhancing innovation rather than replacing human authorship. The study aims to evaluate the effectiveness of machine-human collaboration in generating original and innovative storylines. Using a mixed-methods design, twenty creative writing teams were engaged in structured workshops combining generative AI tools with traditional writing processes. Data were collected from narrative outputs, participant observations, and post-workshop interviews, and analyzed using thematic coding and comparative quality assessment. Findings indicate that AI-assisted teams produced more diverse narrative structures and demonstrated a significant increase in creative risk-taking compared to control groups. The results suggest that AI can serve as a valuable co-creator when guided by intentional human direction. This research concludes that rather than replacing writers, AI technologies can strengthen creative processes, supporting a hybrid model where human judgment shapes and refines machine-generated contributions.


 

Full text article

Generated from XML file

References

Alomar, B., Trabelsi, Z., Qayyum, T., & Ambali Parambil, M. M. (2024). AI and Network Security Curricula: Minding the Gap. IEEE Global Eng. Edu. Conf., EDUCON. IEEE Global Engineering Education Conference, EDUCON. Scopus. https://doi.org/10.1109/EDUCON60312.2024.10578588

BenMessaoud, F., Bolchini, D., Ash, E., & Tseng, C.-M. (2023). FazBoard: An AI-Educational Hybrid Teaching and Learning System. In Arai K. (Ed.), Lect. Notes Networks Syst.: Vol. 813 LNNS (pp. 305–315). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-47454-5_23

Chen Q. & Li J. (Eds.). (2021). Asia Pacific Web and Web-Age Information Management Joint International Conference on Web and Big Data, APWeb-WAIM 2020 in conjunction with 3rd International Workshop on Knowledge Graph Management and Applications, KGMA 2020, 2nd International Workshop on Semi-structured Big Data Management and Applications, SemiBDMA 2020 and 1st International Workshop on Deep Learning in Large-scale Unstructured Data Analytics, DeepLUDA 2020. Communications in Computer and Information Science, 1373 CCIS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107345604&partnerID=40&md5=b0fce28b324913f171ebf763d3963ec7

Cristea, A. I., Alamri, A., Kayama, M., Stewart, C., Alshehri, M., & Shi, L. (2018). Earliest predictor of dropout in MOOCs: A longitudinal study of futurelearn courses. In Andersson B., Johansson B., Barry C., Lang M., Linger H., & Schneider C. (Eds.), Proc. Int. Conf. Inf. Syst. Dev.: Des. Digit., ISD. Association for Information Systems; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086228712&partnerID=40&md5=f79d263fbbba4dbf85101d84fba5b3f3

Dai, J.-Y., Yeh, K.-L., Kao, M.-T., Yuan, Y.-H., & Chang, M.-W. (2021). Applying petri-net to construct knowledge graphs for adaptive learning diagnostics and learning recommendations. Journal of Research in Education Sciences, 66(3), 61–105. Scopus. https://doi.org/10.6209/JORIES.202109_66(3).0003

Dunagan, L., & Larson, D. A. (2021). Alignment of Competency-Based Learning and Assessment to Adaptive Instructional Systems. In Sottilare R.A. & Schwarz J. (Eds.), Lect. Notes Comput. Sci.: Vol. 12792 LNCS (pp. 537–549). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-030-77857-6_38

Efrianova, V., Yaakob, M., Salameh, A. A., Hussin, K. C., & Zaki, N. A. M. (2024). Formative Assessment of Student’s Academic Achievements in Mobile Learning Environments. International Journal of Interactive Mobile Technologies, 18(11), 52–63. Scopus. https://doi.org/10.3991/IJIM.V18I11.49045

Erratum regarding missing Declaration of Competing Interest statements in previously published articles (International Journal of Child-Computer Interaction (2022) 31, (S2212868921001185), (10.1016/j.ijcci.2021.100443)). (2024). International Journal of Child-Computer Interaction, 41. Scopus. https://doi.org/10.1016/j.ijcci.2024.100674

Fadlelmula, M., Alyafei, N., & Retnanto, A. (2024). Enhancing Petroleum-Engineering Education through Active Student Engagement, Hands-On Experience, and Technology Integration. ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202079502&partnerID=40&md5=f44c605ca567e1e86fc498dca5596c59

Fessl, A., Wertner, A., & Pammer-Schindler, V. (2018). Challenges in developing automatic learning guidance in relation to an information literacy curriculum. In Fessl A., Thalmann S., d’Aquin M., Holtz P., & Dietze S. (Eds.), CEUR Workshop Proc. (Vol. 2209). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055702175&partnerID=40&md5=e1f06a416a8acdef537b17e46b195229

Geetha, M. C. S., Kaviyassri, K., Pacifica, J. J., & Kaviyadharshini, M. (2025). Education 4.0: Unraveling the Data Science Connection. In Cyber security and Data Science Innovations for Sustainable Development of HEICC: Healthcare, Education, Industry, Cities, and Communities (pp. 196–212). CRC Press; Scopus. https://doi.org/10.1201/9781032711300-14

Harrison, D. E., & Ajjan, H. (2019). Customer relationship management technology: Bridging the gap between marketing education and practice. Journal of Marketing Analytics, 7(4), 205–219. Scopus. https://doi.org/10.1057/s41270-019-00063-6

Krechetov, I., & Romanenko, V. (2020). Adaptive learning technologies in TUSUR University. In van der Veen J., van Hattum-Janssen N., Jarvinen H.-M., de Laet T., & Ten Dam I. (Eds.), SEFI Annu. Conf. Engag. Eng. Educ., Proc. (pp. 269–276). European Society for Engineering Education (SEFI); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107186449&partnerID=40&md5=863a112b5ae574832cda583b6e1a0b08

Liu, Z., Guo, R., Jiao, X., Gao, X., Oh, H., & Xing, W. (2024). How AI Assisted K-12 Computer Science Education: A Systematic Review. ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202031094&partnerID=40&md5=5083fa02b752a68c4812607906e3794f

Molnár, G., & Nagy, E. (2025). Current Issues in Effective Learning: Methodological and Technological Challenges and Opportunities Based on Modern ICT and Artificial Intelligence. In Tur?áni M. (Ed.), EAI/Springer Inno. Comm. Comp. (pp. 1–11). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-81261-3_1

Moltudal, S. H., Krumsvik, R. J., & Høydal, K. L. (2022). Adaptive Learning Technology in Primary Education: Implications for Professional Teacher Knowledge and Classroom Management. Frontiers in Education, 7. Scopus. https://doi.org/10.3389/feduc.2022.830536

Nagy, E., Sik, D., Biczo, Z., Zimányi, K., Pörzse, G., & Molnár, G. (2024). Advanced Digital and Artificial Intelligence-Based Solutions for Interactive, Collaborative Learning Support. CANDO-EPE - Proc.: IEEE Int. Conf. Workshop Obuda Electr. Power Eng., 103–107. Scopus. https://doi.org/10.1109/CANDO-EPE65072.2024.10772869

Nutalapati, H., Velmurugan, S., & Tiglao, N. M. (2024). Coding Buddy: An Adaptive AI-Powered Platform for Personalized Learning. Int. Symp. Networks, Comput. Commun., ISNCC. 2024 International Symposium on Networks, Computers and Communications, ISNCC 2024. Scopus. https://doi.org/10.1109/ISNCC62547.2024.10759044

Parfenov, D., & Zaporozhko, V. (2018). Developing SMART educational cloud environment on the basis of adaptive massive open online courses. In Hanssgen K. & Bolodurina I. (Eds.), CEUR Workshop Proc. (Vol. 2093, pp. 35–41). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048233385&partnerID=40&md5=3c8d763459d80b602f5639eec992d86f

Park, E., Ifenthaler, D., & Clariana, R. B. (2023). Adaptive or adapted to: Sequence and reflexive thematic analysis to understand learners’ self-regulated learning in an adaptive learning analytics dashboard. British Journal of Educational Technology, 54(1), 98–125. Scopus. https://doi.org/10.1111/bjet.13287

Quigley, D., Caccamise, D., Weatherley, J., & Foltz, P. (2020). Exploring video engagement in an intelligent tutoring system. In Sottilare R.A. & Schwarz J. (Eds.), Lect. Notes Comput. Sci.: Vol. 12214 LNCS (pp. 519–530). Springer; Scopus. https://doi.org/10.1007/978-3-030-50788-6_38

Quijano-Cabezas, P. A., Duque-Méndez, N., & Jiménez-Builes, J. A. (2024). Data Generation Strategies for the Application of Adaptive Learning Analytics. In Duque-Méndez N.D., Aristizábal-Quintero L.A., Orozco-Alzate M., & Aguilar J. (Eds.), Commun. Comput. Info. Sci.: Vol. 2209 CCIS (pp. 193–210). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-75236-0_15

Raj, N. S., Prasad, S., Harish, P., Boban, M., & Cheriyedath, N. (2021). Early Prediction of At-Risk Students in a Virtual Learning Environment Using Deep Learning Techniques. In Sottilare R.A. & Schwarz J. (Eds.), Lect. Notes Comput. Sci.: Vol. 12793 LNCS (pp. 110–120). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-030-77873-6_8

Saeed, M. M. A., Saeed, R. A., Ahmed, Z. E., Gaid, A. S. A., & Mokhtar, R. A. (2024). AI technologies in engineering education. In AI-Enhanc. Teach. Methods (pp. 61–87). IGI Global; Scopus. https://doi.org/10.4018/979-8-3693-2728-9.ch003

Saul, K., Howard, A. K. T., Webster, Z., & Spencer, D. (2022). An Adaptive Learning Engineering Mechanics Curricular Sequence. ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138247314&partnerID=40&md5=fe8db267dd6e549c026dfc4e39c468f3

Singh, C., & Pandey, A. (2019). Analysing trends in student’s performance across maharashtra through non-adaptive and adaptive online assessments based on the underlying framework of classical test and item response theory. In Jain L.C., Johri P., & Balas V.E. (Eds.), Adv. Intell. Sys. Comput. (Vol. 847, pp. 305–325). Springer Verlag; Scopus. https://doi.org/10.1007/978-981-13-2254-9_27

Xi, J., Chen, Y., & Wang, G. (2018). Design of a personalized massive open online course platform. International Journal of Emerging Technologies in Learning, 13(4), 58–70. Scopus. https://doi.org/10.3991/ijet.v13i04.8470

Zhang, N., Biswas, G., Chiu, J. L., & McElhaney, K. W. (2019). Analyzing students’ design solutions in an NGSS-aligned earth sciences curriculum. In Isotani S., Millán E., Ogan A., McLaren B., Hastings P., & Luckin R. (Eds.), Lect. Notes Comput. Sci.: Vol. 11625 LNAI (pp. 532–543). Springer Verlag; Scopus. https://doi.org/10.1007/978-3-030-23204-7_44

Authors

Ardi Azhar Dara
ardi.azhar@gmail.com (Primary Contact)
Zhang Li
Wang Jing
Dara, A. A., Li, Z., & Jing, W. (2025). AI-Augmented Creative Writing: Evaluating Machine-Human Collaboration in Narrative Innovation. Journal of Loomingulisus Ja Innovatsioon, 2(3), 155–167. https://doi.org/10.70177/innovatsioon.v2i3.2357

Article Details