AI-Augmented Creative Writing: Evaluating Machine-Human Collaboration in Narrative Innovation
Abstract
This study examines how artificial intelligence (AI) can augment human creativity in the field of narrative writing through a collaborative approach. The research addresses the growing influence of AI-based tools in creative industries and the need to understand their role in enhancing innovation rather than replacing human authorship. The study aims to evaluate the effectiveness of machine-human collaboration in generating original and innovative storylines. Using a mixed-methods design, twenty creative writing teams were engaged in structured workshops combining generative AI tools with traditional writing processes. Data were collected from narrative outputs, participant observations, and post-workshop interviews, and analyzed using thematic coding and comparative quality assessment. Findings indicate that AI-assisted teams produced more diverse narrative structures and demonstrated a significant increase in creative risk-taking compared to control groups. The results suggest that AI can serve as a valuable co-creator when guided by intentional human direction. This research concludes that rather than replacing writers, AI technologies can strengthen creative processes, supporting a hybrid model where human judgment shapes and refines machine-generated contributions.
Full text article
References
Alomar, B., Trabelsi, Z., Qayyum, T., & Ambali Parambil, M. M. (2024). AI and Network Security Curricula: Minding the Gap. IEEE Global Eng. Edu. Conf., EDUCON. IEEE Global Engineering Education Conference, EDUCON. Scopus. https://doi.org/10.1109/EDUCON60312.2024.10578588
BenMessaoud, F., Bolchini, D., Ash, E., & Tseng, C.-M. (2023). FazBoard: An AI-Educational Hybrid Teaching and Learning System. In Arai K. (Ed.), Lect. Notes Networks Syst.: Vol. 813 LNNS (pp. 305–315). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-47454-5_23
Chen Q. & Li J. (Eds.). (2021). Asia Pacific Web and Web-Age Information Management Joint International Conference on Web and Big Data, APWeb-WAIM 2020 in conjunction with 3rd International Workshop on Knowledge Graph Management and Applications, KGMA 2020, 2nd International Workshop on Semi-structured Big Data Management and Applications, SemiBDMA 2020 and 1st International Workshop on Deep Learning in Large-scale Unstructured Data Analytics, DeepLUDA 2020. Communications in Computer and Information Science, 1373 CCIS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107345604&partnerID=40&md5=b0fce28b324913f171ebf763d3963ec7
Cristea, A. I., Alamri, A., Kayama, M., Stewart, C., Alshehri, M., & Shi, L. (2018). Earliest predictor of dropout in MOOCs: A longitudinal study of futurelearn courses. In Andersson B., Johansson B., Barry C., Lang M., Linger H., & Schneider C. (Eds.), Proc. Int. Conf. Inf. Syst. Dev.: Des. Digit., ISD. Association for Information Systems; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086228712&partnerID=40&md5=f79d263fbbba4dbf85101d84fba5b3f3
Dai, J.-Y., Yeh, K.-L., Kao, M.-T., Yuan, Y.-H., & Chang, M.-W. (2021). Applying petri-net to construct knowledge graphs for adaptive learning diagnostics and learning recommendations. Journal of Research in Education Sciences, 66(3), 61–105. Scopus. https://doi.org/10.6209/JORIES.202109_66(3).0003
Dunagan, L., & Larson, D. A. (2021). Alignment of Competency-Based Learning and Assessment to Adaptive Instructional Systems. In Sottilare R.A. & Schwarz J. (Eds.), Lect. Notes Comput. Sci.: Vol. 12792 LNCS (pp. 537–549). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-030-77857-6_38
Efrianova, V., Yaakob, M., Salameh, A. A., Hussin, K. C., & Zaki, N. A. M. (2024). Formative Assessment of Student’s Academic Achievements in Mobile Learning Environments. International Journal of Interactive Mobile Technologies, 18(11), 52–63. Scopus. https://doi.org/10.3991/IJIM.V18I11.49045
Erratum regarding missing Declaration of Competing Interest statements in previously published articles (International Journal of Child-Computer Interaction (2022) 31, (S2212868921001185), (10.1016/j.ijcci.2021.100443)). (2024). International Journal of Child-Computer Interaction, 41. Scopus. https://doi.org/10.1016/j.ijcci.2024.100674
Fadlelmula, M., Alyafei, N., & Retnanto, A. (2024). Enhancing Petroleum-Engineering Education through Active Student Engagement, Hands-On Experience, and Technology Integration. ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202079502&partnerID=40&md5=f44c605ca567e1e86fc498dca5596c59
Fessl, A., Wertner, A., & Pammer-Schindler, V. (2018). Challenges in developing automatic learning guidance in relation to an information literacy curriculum. In Fessl A., Thalmann S., d’Aquin M., Holtz P., & Dietze S. (Eds.), CEUR Workshop Proc. (Vol. 2209). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055702175&partnerID=40&md5=e1f06a416a8acdef537b17e46b195229
Geetha, M. C. S., Kaviyassri, K., Pacifica, J. J., & Kaviyadharshini, M. (2025). Education 4.0: Unraveling the Data Science Connection. In Cyber security and Data Science Innovations for Sustainable Development of HEICC: Healthcare, Education, Industry, Cities, and Communities (pp. 196–212). CRC Press; Scopus. https://doi.org/10.1201/9781032711300-14
Harrison, D. E., & Ajjan, H. (2019). Customer relationship management technology: Bridging the gap between marketing education and practice. Journal of Marketing Analytics, 7(4), 205–219. Scopus. https://doi.org/10.1057/s41270-019-00063-6
Krechetov, I., & Romanenko, V. (2020). Adaptive learning technologies in TUSUR University. In van der Veen J., van Hattum-Janssen N., Jarvinen H.-M., de Laet T., & Ten Dam I. (Eds.), SEFI Annu. Conf. Engag. Eng. Educ., Proc. (pp. 269–276). European Society for Engineering Education (SEFI); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107186449&partnerID=40&md5=863a112b5ae574832cda583b6e1a0b08
Liu, Z., Guo, R., Jiao, X., Gao, X., Oh, H., & Xing, W. (2024). How AI Assisted K-12 Computer Science Education: A Systematic Review. ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202031094&partnerID=40&md5=5083fa02b752a68c4812607906e3794f
Molnár, G., & Nagy, E. (2025). Current Issues in Effective Learning: Methodological and Technological Challenges and Opportunities Based on Modern ICT and Artificial Intelligence. In Tur?áni M. (Ed.), EAI/Springer Inno. Comm. Comp. (pp. 1–11). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-81261-3_1
Moltudal, S. H., Krumsvik, R. J., & Høydal, K. L. (2022). Adaptive Learning Technology in Primary Education: Implications for Professional Teacher Knowledge and Classroom Management. Frontiers in Education, 7. Scopus. https://doi.org/10.3389/feduc.2022.830536
Nagy, E., Sik, D., Biczo, Z., Zimányi, K., Pörzse, G., & Molnár, G. (2024). Advanced Digital and Artificial Intelligence-Based Solutions for Interactive, Collaborative Learning Support. CANDO-EPE - Proc.: IEEE Int. Conf. Workshop Obuda Electr. Power Eng., 103–107. Scopus. https://doi.org/10.1109/CANDO-EPE65072.2024.10772869
Nutalapati, H., Velmurugan, S., & Tiglao, N. M. (2024). Coding Buddy: An Adaptive AI-Powered Platform for Personalized Learning. Int. Symp. Networks, Comput. Commun., ISNCC. 2024 International Symposium on Networks, Computers and Communications, ISNCC 2024. Scopus. https://doi.org/10.1109/ISNCC62547.2024.10759044
Parfenov, D., & Zaporozhko, V. (2018). Developing SMART educational cloud environment on the basis of adaptive massive open online courses. In Hanssgen K. & Bolodurina I. (Eds.), CEUR Workshop Proc. (Vol. 2093, pp. 35–41). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048233385&partnerID=40&md5=3c8d763459d80b602f5639eec992d86f
Park, E., Ifenthaler, D., & Clariana, R. B. (2023). Adaptive or adapted to: Sequence and reflexive thematic analysis to understand learners’ self-regulated learning in an adaptive learning analytics dashboard. British Journal of Educational Technology, 54(1), 98–125. Scopus. https://doi.org/10.1111/bjet.13287
Quigley, D., Caccamise, D., Weatherley, J., & Foltz, P. (2020). Exploring video engagement in an intelligent tutoring system. In Sottilare R.A. & Schwarz J. (Eds.), Lect. Notes Comput. Sci.: Vol. 12214 LNCS (pp. 519–530). Springer; Scopus. https://doi.org/10.1007/978-3-030-50788-6_38
Quijano-Cabezas, P. A., Duque-Méndez, N., & Jiménez-Builes, J. A. (2024). Data Generation Strategies for the Application of Adaptive Learning Analytics. In Duque-Méndez N.D., Aristizábal-Quintero L.A., Orozco-Alzate M., & Aguilar J. (Eds.), Commun. Comput. Info. Sci.: Vol. 2209 CCIS (pp. 193–210). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-75236-0_15
Raj, N. S., Prasad, S., Harish, P., Boban, M., & Cheriyedath, N. (2021). Early Prediction of At-Risk Students in a Virtual Learning Environment Using Deep Learning Techniques. In Sottilare R.A. & Schwarz J. (Eds.), Lect. Notes Comput. Sci.: Vol. 12793 LNCS (pp. 110–120). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-030-77873-6_8
Saeed, M. M. A., Saeed, R. A., Ahmed, Z. E., Gaid, A. S. A., & Mokhtar, R. A. (2024). AI technologies in engineering education. In AI-Enhanc. Teach. Methods (pp. 61–87). IGI Global; Scopus. https://doi.org/10.4018/979-8-3693-2728-9.ch003
Saul, K., Howard, A. K. T., Webster, Z., & Spencer, D. (2022). An Adaptive Learning Engineering Mechanics Curricular Sequence. ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138247314&partnerID=40&md5=fe8db267dd6e549c026dfc4e39c468f3
Singh, C., & Pandey, A. (2019). Analysing trends in student’s performance across maharashtra through non-adaptive and adaptive online assessments based on the underlying framework of classical test and item response theory. In Jain L.C., Johri P., & Balas V.E. (Eds.), Adv. Intell. Sys. Comput. (Vol. 847, pp. 305–325). Springer Verlag; Scopus. https://doi.org/10.1007/978-981-13-2254-9_27
Xi, J., Chen, Y., & Wang, G. (2018). Design of a personalized massive open online course platform. International Journal of Emerging Technologies in Learning, 13(4), 58–70. Scopus. https://doi.org/10.3991/ijet.v13i04.8470
Zhang, N., Biswas, G., Chiu, J. L., & McElhaney, K. W. (2019). Analyzing students’ design solutions in an NGSS-aligned earth sciences curriculum. In Isotani S., Millán E., Ogan A., McLaren B., Hastings P., & Luckin R. (Eds.), Lect. Notes Comput. Sci.: Vol. 11625 LNAI (pp. 532–543). Springer Verlag; Scopus. https://doi.org/10.1007/978-3-030-23204-7_44