Heatwaves and Urban Elderly Mortality: A Retrospective Cohort Study Using Remote Sensing Data
Abstract
Climate change is intensifying the frequency and severity of heatwaves, posing a significant threat to public health. Urban elderly populations are particularly vulnerable due to the urban heat island effect and age-related physiological sensitivities. Quantifying this risk with precision is essential for developing targeted public health interventions. This study aimed to quantify the association between exposure to extreme heat events, as measured by remote sensing data, and all-cause mortality among an elderly urban population. A retrospective cohort study was conducted using health data for 50,000 urban residents aged 65 and over from 2015-2022. Land Surface Temperature (LST) data derived from Landsat satellites were used to define heatwave exposure at a granular, neighborhood level. Cox proportional hazards models were used to analyze the association between heatwave exposure and mortality, adjusting for confounding variables. A significant association was found between heatwave exposure and increased mortality risk. For each 1°C increase in LST during a heatwave, there was a 5.2% (95% CI: 4.5%-6.0%) increase in all-cause mortality. The risk was most pronounced in neighborhoods with lower green space coverage. Satellite-derived remote sensing data provide a powerful tool for assessing heatwave-related mortality risk in urban elderly populations. These findings underscore the urgent need for urban planning and public health strategies focused on heat mitigation to protect vulnerable residents.
Full text article
References
Afolabi, S. O., Malachi, I. O., Olawumi, A. O., & Oladapo, B. I. (2025). Data Process of Net-Zero Revolution for Transforming Earth and Beyond Sustainably. Sustainability (Switzerland), 17(12). Scopus. https://doi.org/10.3390/su17125367
Almomani, M. M., Mayyas, Y. O., Alomari, O. H., Tashtoush, G. M., Cherdkeattikul, S., & Akafuah, N. K. (2025). Augmenting energy efficiency in automotive paint ovens: A review of future prospects and potential for lean, six sigma, AI, and IoT integration. Management of Environmental Quality. Scopus. https://doi.org/10.1108/MEQ-03-2025-0164
Alshammari, S. S., Ani, U. D., Sarfraz, S., Okorie, O., & Salonitis, K. (2025). Digital Capability as an Enabler of Circular Economy in Saudi Arabia’s Manufacturing Sector. In Mansour Y., Subramaniam U., Mustaffa Z., Abdelhadi A., Al-Atroush M., & Abowardah E. (Eds.), Lect. Notes Civ. Eng.: Vol. 558 LNCE (pp. 55–62). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-97-8345-8_8
Ba, L., Tangour, F., El Abbassi, I., & Absi, R. (2025). Analysis of Digital Twin Applications in Energy Efficiency: A Systematic Review. Sustainability (Switzerland), 17(8). Scopus. https://doi.org/10.3390/su17083560
Balogun, K., & Xu, L. (2025). Data Pre-processing of Hard Disk Drive Data for Failure Prediction in the Context of Industry 4.0. In Camarinha-Matos L.M. & Ferrada F. (Eds.), IFIP Advances in Information and Communication Technology: Vol. 759 IFIPAICT (pp. 77–100). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-97051-1_6
Bataineh, A., Alqudah, H., Abdoh, H. B., & Fataftah, F. (2025). Big Data-Enabled Federated Learning for Secure and Collaborative Industrial IoT in Industry 4.0. Int. Conf. Comput. Intell. Approaches Appl., ICCIAA - Proc. 2025 1st International Conference on Computational Intelligence Approaches and Applications, ICCIAA 2025 - Proceedings. Scopus. https://doi.org/10.1109/ICCIAA65327.2025.11013637
Brillinger, M., Abdul Hadi, M., Trabesinger, S., Schmid, J., & Lackner, F. (2025). CNC machining data repository: Geometry, NC code & high-frequency energy consumption data for aluminum and plastic machining. Data in Brief, 61. Scopus. https://doi.org/10.1016/j.dib.2025.111814
Daraio, C., Di Leo, S., & Orsini, J. (2025). An Integrated and Flexible Review Framework to Evaluate the Evolution and Barriers of Digital-Twin Technologies in Industrial and Healthcare Domains. Global Journal of Flexible Systems Management. Scopus. https://doi.org/10.1007/s40171-025-00447-x
González-Prida, V., Márquez, C. P., Gunckel, P. V., Rodríguez, F. K., & Márquez, A. C. (2025). Digital Transformation in Aftersales and Warranty Management: A Review of Advanced Technologies in I4.0. Algorithms, 18(4). Scopus. https://doi.org/10.3390/a18040231
Hwang, P.-W., Chang, Y.-J., Tsai, H.-C., Tu, Y.-T., & Yang, H.-P. (2025). Comparison and Optimization of Generalized Stamping Machine Fault Diagnosis Models Using Various Transfer Learning Methodologies. Sensors, 25(6). Scopus. https://doi.org/10.3390/s25061779
Khan, T., Khan, U., Khan, A., Mollan, C., Morkvenaite-Vilkonciene, I., & Pandey, V. (2025). Data-Driven Digital Twin Framework for Predictive Maintenance of Smart Manufacturing Systems. Machines, 13(6). Scopus. https://doi.org/10.3390/machines13060481
Kodumuru, R., Sarkar, S., Parepally, V., & Chandarana, J. (2025). Artificial Intelligence and Internet of Things Integration in Pharmaceutical Manufacturing: A Smart Synergy. Pharmaceutics, 17(3). Scopus. https://doi.org/10.3390/pharmaceutics17030290
Kogel-Hollacher, M., Nicolay, T., Reiser, J., Boley, S., Schwarz, J., & Pallier, G. (2025). Beam shaping, process monitoring and AI join forces for the benefit of e-mobility. In Kaierle S. & Kleine K.R. (Eds.), Proc SPIE Int Soc Opt Eng (Vol. 13356). SPIE; Scopus. https://doi.org/10.1117/12.3044297
Kumar, D., Kuntal, R. S., Deep, P., Chamoli, A. S., Singh, P., & Mandal, R. (2025). Cloud Based Automated Control System Workshops and Rooms for Controlling Parameters. Int. Conf. Adv. Comput. Sci., Electr., Electron., Commun. Technol., CE2CT, 1116–1121. Scopus. https://doi.org/10.1109/CE2CT64011.2025.10939521
Le, N.-H., Diep, T.-H., Trinh, N.-D., Nguyen, N.-H., Nguyen, V.-T., Debnath, N. C., & Nguyen, T.-S. (2025). DEVELOPMENT OF A CYBER PHYSICAL SYSTEM FOR CONVENTIONAL MACHINES IN SMART FACTORIES. International Journal of Computers and Their Applications, 32(1), 5–13. Scopus.
Lee, G.-C., Chiu, Y.-H., & Lee, K.-C. (2025). Construction of Fully Automated Key Production Line †. Engineering Proceedings, 92(1). Scopus. https://doi.org/10.3390/engproc2025092083
Li, Z., Zheng, P., & Tian, Y. (2025). Application of IoT and blockchain technology in the integration of innovation and industrial chains in high-tech manufacturing. Alexandria Engineering Journal, 119, 465–477. Scopus. https://doi.org/10.1016/j.aej.2025.01.020
Mellouli, H., Meddaoui, A., Zaki, A., & Jadli, A. (2025). An LSTM-based decision-making model for predictive manufacturing performance optimization. International Journal of Advanced Manufacturing Technology, 137(5), 2595–2608. Scopus. https://doi.org/10.1007/s00170-025-15322-3
Park, Y. J. (2025). Convolutional LSTM Neural Network Autoencoder Based Fault Detection in Manufacturing Predictive Maintenance. Journal of Machine and Computing, 5(2), 914–923. Scopus. https://doi.org/10.53759/7669/jmc202505072
Pitzalis, R. F., Giordano, A., Di Spigno, A., Cowell, A., Niculita, O., & Berselli, G. (2025). Application of augmented reality-based digital twin approaches: A case study to industrial equipment. International Journal of Advanced Manufacturing Technology, 138(7), 3747–3763. Scopus. https://doi.org/10.1007/s00170-025-15755-w
Raval, J., Dheeraj, R., Markande, A., Anand, V., & Jha, S. (2025). Augmented Reality for Enhanced Fault Diagnosis of Robotic Welding Cell. In Chakrabarti A., Suwas S., & Arora M. (Eds.), Lect. Notes Mech. Eng. (Vol. 5, pp. 35–45). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-97-6176-0_4
Saveetha, D., Ponnusamy, V., Zdravkovi?, N., & Nandini, S. M. (2025). Blockchain Application in Industry 5.0. In Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing (pp. 421–442). wiley; Scopus. https://doi.org/10.1002/9781394303601.ch19
Shadravan, A., & Parsaei, H. R. (2025). Applications of Enabling Technologies for Industry 4.0 and Industry 5.0 in Manufacturing Sectors: A Review. In Lect. Notes Prod. Eng.: Vol. Part F566 (pp. 157–165). Springer Nature; Scopus. https://doi.org/10.1007/978-3-031-77723-3_15
Sivakumar, M., Maranco, M., Krishnaraj, N., & Srinivasulu Reddy, U. (2025). Data Analytics and Visualization in Smart Manufacturing Using AI-Based Digital Twins. In Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing (pp. 249–277). wiley; Scopus. https://doi.org/10.1002/9781394303601.ch12
Somu, N., & Dasappa, N. S. (2025). An edge-cloud IIoT framework for predictive maintenance in manufacturing systems. Advanced Engineering Informatics, 65. Scopus. https://doi.org/10.1016/j.aei.2025.103388
Topolsky, D., Beliakova, V., & Patrakhina, T. (2025). Development of Intelligent Manufacturing Solutions Based on Agent-Service Approach. Proc. - Int. Conf. Ind. Eng., Appl. Manuf., ICIEAM, 431–435. Scopus. https://doi.org/10.1109/ICIEAM65163.2025.11028375
Tyagi, A. K., Tiwari, S., Arumugam, S. K., & Sharma, A. K. (2025). Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing. In Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing (p. 585). wiley; Scopus. https://doi.org/10.1002/9781394303601
Zhang, Y., Wang, B., Wang, Z., Yang, J., Gao, L., & Zhao, Z. (2025). Design and implementation of intelligent operation and maintenance system in edge computing environment. In Liu Y. (Ed.), Proc SPIE Int Soc Opt Eng (Vol. 13552). SPIE; Scopus. https://doi.org/10.1117/12.3060441
Zhang, Z., & Zhang, H. (2025). APPLICATION OF BIG DATA ANALYSIS IN INTELLIGENT INDUSTRIAL DESIGN USING SCALABLE COMPUTATIONAL MODEL. Scalable Computing, 26(3), 1180–1195. Scopus. https://doi.org/10.12694/scpe.v26i3.4381