Mapping and Remote Sensing Technology for Agricultural Land Management in China
Abstract
Agricultural land management in China faces significant challenges due to rapid urbanization, climate change, and the need for sustainable practices. Advanced technologies such as mapping and remote sensing offer promising solutions to enhance agricultural productivity and sustainability. These technologies provide precise data for monitoring crop health, soil conditions, and land use, enabling better decision-making and resource management. This study aims to evaluate the effectiveness of mapping and remote sensing technology in improving agricultural land management in China. The research assesses how these technologies can enhance crop monitoring, optimize resource use, and support sustainable farming practices. A mixed-methods approach was employed, combining quantitative data from satellite imagery and field surveys with qualitative insights from interviews with farmers and agricultural experts. Satellite imagery was analyzed to monitor crop health, soil moisture, and land use patterns. Field surveys were conducted to validate the remote sensing data. Interviews with farmers and experts provided additional insights into these technologies' practical benefits and challenges. The findings indicate that mapping and remote sensing technology significantly improve agricultural land management. Crop health monitoring through remote sensing showed a 25% increase in accuracy compared to traditional methods. Optimized resource use was observed, with a 20% reduction in water and fertilizer usage. Land use patterns were more efficiently managed, leading to better crop rotation and soil conservation practices. Farmers reported enhanced decision-making capabilities and improved crop yields. Mapping and remote sensing technology substantially benefit agricultural land management in China. The increased accuracy in crop monitoring and optimized resource use contribute to higher productivity and sustainability. Further research and investment in these technologies are recommended to maximize their potential and support sustainable agricultural practices.
Full text article
References
Achmadi, P. N., Dimyati, M., Manesa, M. D. M., & Rakuasa, H. (2023). Model Perubahan Tutupan Lahan Berbasis Ca-Markov: Studi Kasus Kecamatan Ternate Utara, Kota Ternate. Jurnal Tanah Dan Sumberdaya Lahan, 10(2), 451–460. https://doi.org/10.21776/ub.jtsl.2023.010.2.28
Akhtar, M., Zhao, Y., Gao, G., Gulzar, Q., Hussain, A., & Samie, A. (2020). Assessment of ecosystem services value in response to prevailing and future land use/cover changes in Lahore, Pakistan. Regional Sustainability, 1(1), 37–47. https://doi.org/10.1016/j.regsus.2020.06.001
BAPPEDA Kota Ambon. (2011). RTRW KOTA AMBON TAHUN 2011 -2031.
Fitriana, A., Subiyanto, S., Firdaus, H., Mustafa, A., Ebaid, A., Omrani, H., McPhearson, T., Xing, W., Qian, Y., Guan, X., Yang, T., Wu, H., Subiyanto, S., Amarrohman, F. J., Al-Shaar, W., Adjizian Gérard, J., Nehme, N., Lakiss, H., Buccianti Barakat, L., … Supriatna, S. (2021). Land change prediction in Bondowoso Regency using Automata Markov method. {IOP} Conference Series: Earth and Environmental Science, 311(4), 100321. https://doi.org/https://doi.org/10.1016/j.cageo.2020.104430
Heinrich Rakuasa, G. S. (2022). Analisis Spasial Kesesuaian dan Evaluasi Lahan Permukiman di Kota Ambon. Jurnal Sains Informasi Geografi (J SIG), 5(1), 1–9. https://doi.org/DOI: http://dx.doi.org/10.31314/j%20sig.v5i1.1432
Latue, P. C., & Rakuasa, H. (2023). Analysis of Land Cover Change Due to Urban Growth in Central Ternate District, Ternate City using Cellular Automata-Markov Chain. Journal of Applied Geospatial Information, 7(1), 722–728. https://doi.org/https://doi.org/10.30871/jagi.v7i1.4653
Latue, P. C., Septory, J. S. I., & Rakuasa, H. (2023). Perubahan Tutupan Lahan Kota Ambon Tahun 2015, 2019 dan 2023. JPG (Jurnal Pendidikan Geografi), 10(1), 177–186. https://doi.org/http://dx.doi.org/10.20527/jpg.v10i1.15472
Latue, P. C., Pakniany, Y., & Rakuasa, H. (2024). Land Cover Change Model in Sirimau Sub-district, Ambon City, Indonesia. International Journal of Selvicoltura Asean, 1(1 SE-Articles), 10–16. https://journal.ypidathu.or.id/index.php/selvicoltura/article/view/862
Madrigal-Martínez, S., Puga-Calderón, R. J., Bustínza Urviola, V., & Vilca Gómez, Ó. (2022). Spatiotemporal Changes in Land Use and Ecosystem Service Values Under the Influence of Glacier Retreat in a High-Andean Environment. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.941887
Mohamed, A., & Worku, H. (2019). Quantification of the land use/land cover dynamics and the degree of urban growth goodness for sustainable urban land use planning in Addis Ababa and the surrounding Oromia special zone. Journal of Urban Management, 8(1), 145–158. https://doi.org/https://doi.org/10.1016/j.jum.2018.11.002
Muin, A., & Rakuasa, H. (2023). Evaluasi Rencana Tata Ruang Wilayah Kota Ambon Berdasarkan Aspek Kerawanan Banjir. ULIL ALBAB?: Jurnal Ilmiah Multidisiplin, 2(5), 1727–1738. https://doi.org/https://doi.org/10.56799/jim.v2i5.1485
Rakhmonov, S., Umurzakov, U., Rakhmonov, K., Bozarov, I., & Karamatov, O. (2021). Land Use and Land Cover Change in Khorezm, Uzbekistan. E3S Web of Conferences, 227, 01002. https://doi.org/10.1051/e3sconf/202122701002
Rakuasa, H., Ria Karuna, J., & Christi Latue, P. (2024). URBAN LANDSCAPE TRANSFORMATION: LAND COVER CHANGE ANALYSIS IN SIRIMAU SUB-DISTRICT, AMBON CITY. Journal of Data Analytics, Information, and Computer Science, 1(2), 63–70. https://doi.org/10.59407/jdaics.v1i2.649
Rakuasa, H., Sihasale, D. A., Somae, G., & Latue, P. C. (2023). Prediction of Land Cover Model for Central Ambon City in 2041 Using the Cellular Automata Markov Chains Method. Jurnal Geosains Dan Remote Sensing, 4(1), 1–10. https://doi.org/10.23960/jgrs.2023.v4i1.85
Salakory, M., Rakuasa, H. (2022). Modeling of Cellular Automata Markov Chain for predicting the carrying capacity of Ambon City. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (JPSL), 12(2), 372–387. https://doi.org/https://doi.org/10.29244/jpsl.12.2.372-387
Septory, J. S. I., Latue, P. C., & Rakuasa, H. (2023). Model Dinamika Spasial Perubahan Tutupan Lahan dan Daya Dukung Lahan Permukiman Kota Ambon Tahun 2031. GEOGRAPHIA?: Jurnal Pendidikan Dan Penelitian Geografi, 4(1), 51–62. https://doi.org/10.53682/gjppg.v4i1.5801
Stoian, A., Poulain, V., Inglada, J., Poughon, V., & Derksen, D. (2019). Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems. Remote Sensing, 11(17), 1986. https://doi.org/10.3390/rs11171986
Sugandhi, N., Supriatna, S., Kusratmoko, E., & Rakuasa, H. (2022). Prediksi Perubahan Tutupan Lahan di Kecamatan Sirimau, Kota Ambon Menggunakan Celular Automata-Markov Chain. JPG (Jurnal Pendidikan Geografi), 9(2), 104–118. https://doi.org/http://dx.doi.org/10.20527/jpg.v9i2.13880
Tariq, A., Mumtaz, F., Majeed, M., & Zeng, X. (2023). Spatio-temporal assessment of land use land cover based on trajectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan. Environmental Monitoring and Assessment, 195(1), 114. https://doi.org/10.1007/s10661-022-10738-w
Toure, S. I., Stow, D. A., Shih, H., Weeks, J., & Lopez-Carr, D. (2018). Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sensing of Environment, 210, 259–268. https://doi.org/https://doi.org/10.1016/j.rse.2018.03.023
Yunita, R., Pratiwi, S. F., Pambudi, B. P., & Rakuasa, H. (2022). Evaluasi Kesesuaian Lahan untuk Budidaya Perikanan Tambak Terhadap Rencana Pola Ruang di Kabupaten Barru Provinsi Sulawesi Selatan. Jurnal Geografi?: Media Informasi Pengembangan Dan Profesi Kegeografian, 19(1), 10–17. https://doi.org/10.15294/jg.v19i1.32201
Zhang, F., Xu, N., Wang, C., Wu, F., & Chu, X. (2020). Effects of land use and land cover change on carbon sequestration and adaptive management in Shanghai, China. Physics and Chemistry of the Earth, Parts A/B/C, 120, 102948. https://doi.org/https://doi.org/10.1016/j.pce.2020.102948
Authors
Copyright (c) 2024 Shi Yonglong, Chu Qingjun, Benxiang Guanghui

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.