Application of Robotics in Large-Scale Agriculture in Australia
Abstract
Large-scale agriculture in Australia faces various challenges, such as labor shortages, land management efficiency, and suboptimal use of resources. Robotic technology offers innovative solutions to address these problems by automating agricultural processes, such as planting, fertilizing, and harvesting. This study aims to evaluate the impact of the application of robotics technology in large-scale agriculture in Australia, including its impact on productivity, resource use efficiency, and environmental sustainability. The research uses a combined qualitative and quantitative approach. Quantitative data was collected through surveys of farmers in different regions of Australia, while qualitative data was obtained from in-depth interviews with farmers and agronomists. The data collected was analyzed to understand the impact of robotics technology on productivity and resource use. The results show that the use of robotic technology increases productivity by 20% in the wheat and cotton sectors. In addition, the use of sensor-based automated irrigation systems reduces water consumption by up to 30%, while drones for pesticide applications help reduce chemical use by up to 25%. Robotics technology has contributed significantly to improving the efficiency of large-scale agriculture in Australia, both in terms of increasing crop yields and reducing resource use. These findings suggest that robotics can be a sustainable solution for modern agriculture, although more research is needed to evaluate its long-term impact on the environment.
Full text article
References
Akhavan, A., & Gonçalves, P. (2021). Managing the trade?off between groundwater resources and large?scale agriculture: The case of pistachio production in Iran. System Dynamics Review, 37(2–3), 155–196. https://doi.org/10.1002/sdr.1689
Alexovi?, M., Urban, P. L., Tabani, H., & Sabo, J. (2020). Recent advances in robotic protein sample preparation for clinical analysis and other biomedical applications. Clinica Chimica Acta, 507, 104–116. https://doi.org/10.1016/j.cca.2020.04.015
Azizi, A. (2020). Applications of Artificial Intelligence Techniques to Enhance Sustainability of Industry 4.0: Design of an Artificial Neural Network Model as Dynamic Behavior Optimizer of Robotic Arms. Complexity, 2020, 1–10. https://doi.org/10.1155/2020/8564140
Dzedzickis, A., Suba?i?t?-Žemaitien?, J., Šutinys, E., Samukait?-Bubnien?, U., & Bu?inskas, V. (2021). Advanced Applications of Industrial Robotics: New Trends and Possibilities. Applied Sciences, 12(1), 135. https://doi.org/10.3390/app12010135
Elsacker, E., Søndergaard, A., Van Wylick, A., Peeters, E., & De Laet, L. (2021). Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Construction and Building Materials, 283, 122732. https://doi.org/10.1016/j.conbuildmat.2021.122732
Elswick, C. M., Strong, M. J., Joseph, J. R., Saadeh, Y., Oppenlander, M., & Park, P. (2020). Robotic-Assisted Spinal Surgery. Neurosurgery Clinics of North America, 31(1), 103–110. https://doi.org/10.1016/j.nec.2019.08.012
Fastier-Wooller, J. W., Dau, V. T., Dinh, T., Tran, C.-D., & Dao, D. V. (2021). Pressure and temperature sensitive e-skin for in situ robotic applications. Materials & Design, 208, 109886. https://doi.org/10.1016/j.matdes.2021.109886
Follini, C., Magnago, V., Freitag, K., Terzer, M., Marcher, C., Riedl, M., Giusti, A., & Matt, D. T. (2020). BIM-Integrated Collaborative Robotics for Application in Building Construction and Maintenance. Robotics, 10(1), 2. https://doi.org/10.3390/robotics10010002
Hramov, A. E., Maksimenko, V. A., & Pisarchik, A. N. (2021). Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports, 918, 1–133. https://doi.org/10.1016/j.physrep.2021.03.002
Hu, X., Yang, F., Wu, M., Sui, Y., Guo, D., Li, M., Kang, Z., Sun, J., & Liu, J. (2022). A Super?Stretchable and Highly Sensitive Carbon Nanotube Capacitive Strain Sensor for Wearable Applications and Soft Robotics. Advanced Materials Technologies, 7(3), 2100769. https://doi.org/10.1002/admt.202100769
Javaid, M., Haleem, A., Vaish, A., Vaishya, R., & Iyengar, K. P. (2020). Robotics Applications in COVID-19: A Review. Journal of Industrial Integration and Management, 05(04), 441–451. https://doi.org/10.1142/S2424862220300033
Khaliq, A., Waqas, A., Nisar, Q. A., Haider, S., & Asghar, Z. (2022). Application of AI and robotics in hospitality sector: A resource gain and resource loss perspective. Technology in Society, 68, 101807. https://doi.org/10.1016/j.techsoc.2021.101807
Klaina, H., Guembe, I. P., Lopez-Iturri, P., Campo-Bescós, M. Á., Azpilicueta, L., Aghzout, O., Alejos, A. V., & Falcone, F. (2022). Analysis of low power wide area network wireless technologies in smart agriculture for large-scale farm monitoring and tractor communications. Measurement, 187, 110231. https://doi.org/10.1016/j.measurement.2021.110231
Kong, X., Ge, R., Liu, T., Xu, S., Hao, P., Zhao, X., Li, Z., Lei, X., & Duan, H. (2021). Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation. Chemical Engineering Journal, 407, 127178. https://doi.org/10.1016/j.cej.2020.127178
Lay, J., Nolte, K., & Sipangule, K. (2021). Large-scale farms in Zambia: Locational patterns and spillovers to smallholder agriculture. World Development, 140, 105277. https://doi.org/10.1016/j.worlddev.2020.105277
Li, D., Nanseki, T., Chomei, Y., & Kuang, J. (2023). A review of smart agriculture and production practices in Japanese LARGE?SCALE rice farming. Journal of the Science of Food and Agriculture, 103(4), 1609–1620. https://doi.org/10.1002/jsfa.12204
Li, H., Yao, J., Zhou, P., Chen, X., Xu, Y., & Zhao, Y. (2020). High-force soft pneumatic actuators based on novel casting method for robotic applications. Sensors and Actuators A: Physical, 306, 111957. https://doi.org/10.1016/j.sna.2020.111957
Li, X., Zhu, H., Geisen, S., Bellard, C., Hu, F., Li, H., Chen, X., & Liu, M. (2020). Agriculture erases climate constraints on soil nematode communities across large spatial scales. Global Change Biology, 26(2), 919–930. https://doi.org/10.1111/gcb.14821
Ma, K., Zhao, T., Yang, L., Wang, P., Jin, J., Teng, H., Xia, D., Zhu, L., Li, L., Jiang, Q., & Wang, X. (2020). Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study. Journal of Advanced Research, 23, 123–132. https://doi.org/10.1016/j.jare.2020.01.010
Maeda, E. E., Abera, T. A., Siljander, M., Aragão, L. E. O. C., Moura, Y. M. D., & Heiskanen, J. (2021). Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proceedings of the National Academy of Sciences, 118(7), e2023787118. https://doi.org/10.1073/pnas.2023787118
Mahapatra, B., Walia, M., Rao, C. A. R., Raju, B. M. K., & Saggurti, N. (2021). Vulnerability of agriculture to climate change increases the risk of child malnutrition: Evidence from a large-scale observational study in India. PLOS ONE, 16(6), e0253637. https://doi.org/10.1371/journal.pone.0253637
Malik, S., Hagopian, J., Mohite, S., Lintong, C., Stoffels, L., Giannakopoulos, S., Beckett, R., Leung, C., Ruiz, J., Cruz, M., & Parker, B. (2020). Robotic Extrusion of Algae?Laden Hydrogels for Large?Scale Applications. Global Challenges, 4(1), 1900064. https://doi.org/10.1002/gch2.201900064
Marcacci, G., Gremion, J., Mazenauer, J., Sori, T., Kebede, F., Ewnetu, M., Christe, P., Arlettaz, R., & Jacot, A. (2020). Large-scale versus small-scale agriculture: Disentangling the relative effects of the farming system and semi-natural habitats on birds’ habitat preferences in the Ethiopian highlands. Agriculture, Ecosystems & Environment, 289, 106737. https://doi.org/10.1016/j.agee.2019.106737
Panagopoulos, Y., & Dimitriou, E. (2020). A Large-Scale Nature-Based Solution in Agriculture for Sustainable Water Management: The Lake Karla Case. Sustainability, 12(17), 6761. https://doi.org/10.3390/su12176761
Pandey, A. C., Kaushik, K., & Parida, B. R. (2022). Google Earth Engine for Large-Scale Flood Mapping Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra Basin. Sustainability, 14(7), 4210. https://doi.org/10.3390/su14074210
Perakis, K., Lampathaki, F., Nikas, K., Georgiou, Y., Marko, O., & Maselyne, J. (2020). CYBELE – Fostering precision agriculture & livestock farming through secure access to large-scale HPC enabled virtual industrial experimentation environments fostering scalable big data analytics. Computer Networks, 168, 107035. https://doi.org/10.1016/j.comnet.2019.107035
Qin, C., Xiao, D., Tao, J., Yu, H., Jin, Y., Sun, Y., & Liu, C. (2022). Concentrated velocity synchronous linear chirplet transform with application to robotic drilling chatter monitoring. Measurement, 194, 111090. https://doi.org/10.1016/j.measurement.2022.111090
Romeo, L., Petitti, A., Marani, R., & Milella, A. (2020). Internet of Robotic Things in Smart Domains: Applications and Challenges. Sensors, 20(12), 3355. https://doi.org/10.3390/s20123355
Sun, Z., Wang, Y., Liu, T., Kong, X., Pan, T., Zhang, F., Lei, X., & Duan, X. (2023). Super-stable mineralization of Cu, Cd, Zn and Pb by CaAl-layered double hydroxide: Performance, mechanism, and large-scale application in agriculture soil remediation. Journal of Hazardous Materials, 447, 130723. https://doi.org/10.1016/j.jhazmat.2023.130723
Sun, Z., Zhu, M., Zhang, Z., Chen, Z., Shi, Q., Shan, X., Yeow, R. C. H., & Lee, C. (2021). Artificial Intelligence of Things (AIoT) Enabled Virtual Shop Applications Using Self?Powered Sensor Enhanced Soft Robotic Manipulator. Advanced Science, 8(14), 2100230. https://doi.org/10.1002/advs.202100230
Tian, Y., Chen, C., Sagoe-Crentsil, K., Zhang, J., & Duan, W. (2022). Intelligent robotic systems for structural health monitoring: Applications and future trends. Automation in Construction, 139, 104273. https://doi.org/10.1016/j.autcon.2022.104273
Tisserant, A., Morales, M., Cavalett, O., O’Toole, A., Weldon, S., Rasse, D. P., & Cherubini, F. (2022). Life-cycle assessment to unravel co-benefits and trade-offs of large-scale biochar deployment in Norwegian agriculture. Resources, Conservation and Recycling, 179, 106030. https://doi.org/10.1016/j.resconrec.2021.106030
Vilela, M., & Hochberg, L. R. (2020). Applications of brain-computer interfaces to the control of robotic and prosthetic arms. In Handbook of Clinical Neurology (Vol. 168, pp. 87–99). Elsevier. https://doi.org/10.1016/B978-0-444-63934-9.00008-1
Wakchaure, M., Patle, B. K., & Mahindrakar, A. K. (2023). Application of AI techniques and robotics in agriculture: A review. Artificial Intelligence in the Life Sciences, 3, 100057. https://doi.org/10.1016/j.ailsci.2023.100057
Wang, J., Peng, C., Zhao, Y., Ye, R., Hong, J., Huang, H., & Chen, L. (2021). Application of a Robotic TELE?ECHOGRAPHY System for COVID ?19 Pneumonia. Journal of Ultrasound in Medicine, 40(2), 385–390. https://doi.org/10.1002/jum.15406
Xu, F., Xu, Y., Zhang, H., & Chen, S. (2022). Application of sensing technology in intelligent robotic arc welding: A review. Journal of Manufacturing Processes, 79, 854–880. https://doi.org/10.1016/j.jmapro.2022.05.029
Youn, J.-H., Jeong, S. M., Hwang, G., Kim, H., Hyeon, K., Park, J., & Kyung, K.-U. (2020). Dielectric Elastomer Actuator for Soft Robotics Applications and Challenges. Applied Sciences, 10(2), 640. https://doi.org/10.3390/app10020640
Zarei, M., Lee, G., Lee, S. G., & Cho, K. (2023). Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human–Machine Interfaces. Advanced Materials, 35(4), 2203193. https://doi.org/10.1002/adma.202203193
Zhalmuratova, D., & Chung, H.-J. (2020). Reinforced Gels and Elastomers for Biomedical and Soft Robotics Applications. ACS Applied Polymer Materials, 2(3), 1073–1091. https://doi.org/10.1021/acsapm.9b01078
Zhang, B., Xie, Y., Zhou, J., Wang, K., & Zhang, Z. (2020). State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review. Computers and Electronics in Agriculture, 177, 105694. https://doi.org/10.1016/j.compag.2020.105694
Zhu, D., Feng, X., Xu, X., Yang, Z., Li, W., Yan, S., & Ding, H. (2020). Robotic grinding of complex components: A step towards efficient and intelligent machining – challenges, solutions, and applications. Robotics and Computer-Integrated Manufacturing, 65, 101908. https://doi.org/10.1016/j.rcim.2019.101908
Authors
Copyright (c) 2024 Loso Judijanto, Haruto Takahashi, Yui Nakamura

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.