Utilization of the Microbiome to Increase Food Security Throught Sustainable Biotechnology

Muhammad Hazmi (1), Seo Jiwon (2), Ruby Kingh (3)
(1) Universitas Muhammadiyah Jember, Indonesia,
(2) Sogang University, Korea, Democratic People's Republic of,
(3) University of Jendouba, Tunisia

Abstract

Food security remains a critical global challenge, requiring innovative and sustainable solutions to meet the growing demand for nutritious food. One promising approach is the utilization of microbiomes in sustainable biotechnology to enhance agricultural productivity, improve soil health, and increase food production efficiency. This study aims to explore the potential of microbiome-based biotechnological applications in strengthening food security through sustainable agricultural practices. A qualitative research methodology was employed, involving an extensive literature review and analysis of case studies related to microbiome utilization in agriculture. The findings indicate that microbiomes play a significant role in improving crop resilience, enhancing nutrient absorption, and reducing the need for chemical fertilizers and pesticides. Furthermore, microbiome-based biotechnology contributes to environmental sustainability by promoting soil biodiversity and reducing greenhouse gas emissions. The study concludes that integrating microbiome technology into agricultural systems can significantly enhance food security while ensuring ecological balance. Future research should focus on optimizing microbiome applications and developing scalable implementation strategies for various agricultural settings.


 

Full text article

Generated from XML file

References

Akhi, R., Lavrinienko, A., Hakula, M., Tjäderhane, L., Hindström, R., Nissinen, A., Wang, C., Auvinen, J., Kullaa, A. M., Ylöstalo, P., Salo, T., Kaikkonen, K., Koskimäki, J. J., & Hörkkö, S. (2025). Oral microbiome diversity associates with carotid intima media thickness in middle-aged male subjects. Communications Medicine, 5(1). https://doi.org/10.1038/s43856-025-00773-2

Al-Malki, E. S. (2025). Synthetic biology and parasite genomics: engineering parasite-resistant human microbiomes for sustainable disease prevention. Beni-Suef University Journal of Basic and Applied Sciences, 14(1). https://doi.org/10.1186/s43088-025-00597-y

Choi, H., Kwak, M.-J., Choi, Y., Kang, A. N., Mun, D., Eor, J. Y., Park, M. R., Oh, S., & Kim, Y. (2025). Extracellular vesicles of Limosilactobacillus fermentum SLAM216 ameliorate skin symptoms of atopic dermatitis by regulating gut microbiome on serotonin metabolism. Gut Microbes, 17(1), 2474256. https://doi.org/10.1080/19490976.2025.2474256

Driuchina, A., Isola, V., Hulmi, J. J., Salmi, V. M., Hintikka, J., Ahtiainen, J. P., & Pekkala, S. (2025). Unveiling the impact of competition weight loss on gut microbiota: alterations in diversity, composition, and predicted metabolic functions. Journal of the International Society of Sports Nutrition, 22(1), 2474561. https://doi.org/10.1080/15502783.2025.2474561

Duan, Y., Xu, C., Wang, W., Wang, X., Xu, N., Zhong, J., Gong, W., Zheng, W., Wu, Y.-H., Myers, A., Chu, L., Lu, Y., Delzell, E., Hsing, A. W., Yu, M., He, W., & Zhu, S. (2025). Smoking-related gut microbiota alteration is associated with obesity and obesity-related diseases: results from two cohorts with sibling comparison analyses. BMC Medicine, 23(1). https://doi.org/10.1186/s12916-025-03969-4

El-Baz, A. M., El-Mahmoudy, A. A., Saber, S., & ElRakaiby, M. T. (2025). The coadministration of Lactobacillus probiotic augments the antitumor effect of telmisartan in rats. AMB Express, 15(1). https://doi.org/10.1186/s13568-025-01843-3

Freund, L., Hung, C., Topacio, T. M., Diamond, C., Fresquez, A., Lyons, T. W., & Aronson, E. L. (2025). Diversity of sulfur cycling halophiles within the Salton Sea, California’s largest lake. BMC Microbiology, 25(1). https://doi.org/10.1186/s12866-025-03839-2

Gao, W., Wang, G., Yuan, H., Chen, Y., Che, J., Cheng, Z., Chen, L., Zhang, L., Zhu, Y., Liu, X., Liu, A., Yang, Q., Cao, P., Qian, W., Huang, W., Schnabl, B., Yang, L., & Chu, H. (2025). Gram-positive probiotics improves acetaminophen-induced hepatotoxicity by inhibiting leucine and Hippo-YAP pathway. Cell and Bioscience, 15(1). https://doi.org/10.1186/s13578-025-01370-5

Jiang, K., Pang, X., Li, W., Xu, X., Yang, Y., Shang, C., & Gao, X. (2025). Interbacterial warfare in the human gut: insights from Bacteroidales’ perspective. Gut Microbes, 17(1), 2473522. https://doi.org/10.1080/19490976.2025.2473522

Jimenez-Sanchez, M., Celiberto, L. S., Yang, H., Sham, H. P., & Vallance, B. A. (2025). The gut-skin axis: a bi-directional, microbiota-driven relationship with therapeutic potential. Gut Microbes, 17(1), 2473524. https://doi.org/10.1080/19490976.2025.2473524

Kim, K., & Won, S. (2025). Robust phylogenetic tree-based microbiome association test using repeatedly measured data for composition bias. BMC Bioinformatics, 26(1). https://doi.org/10.1186/s12859-024-06002-2

Kong, F., Wang, S., Zhang, Y., Li, C., Dai, D., Guo, C., Wang, Y., Cao, Z., Yang, H., Bi, Y., Wang, W., & Li, S. (2025). Rumen microbiome associates with postpartum ketosis development in dairy cows: a prospective nested case–control study. Microbiome, 13(1). https://doi.org/10.1186/s40168-025-02072-3

Liu, G.-S., Song, Y., Yan, J.-S., Chai, Y.-J., Zhao, Y.-F., & Ma, H. (2025). Identification of enterotype for patients with Alzheimer’s disease. Journal of Translational Medicine, 23(1). https://doi.org/10.1186/s12967-025-06343-3

Liu, Y., Chen, N., He, H., Liu, L., & Sun, S. (2025). Sodium butyrate alleviates DSS-induced inflammatory bowel disease by inhibiting ferroptosis and modulating ERK/STAT3 signaling and intestinal flora. Annals of Medicine, 57(1), 2470958. https://doi.org/10.1080/07853890.2025.2470958

Nunn, B. L., Brown, T., Timmins-Schiffman, E., Mudge, M. C., Riffle, M., Axworthy, J. B., Dilworth, J., Kenkel, C. D., Zaneveld, J., Rodrigues, L. J., & Padilla-Gamiño, J. L. (2025). Protein signatures predict coral resilience and survival to thermal bleaching events. Communications Earth and Environment, 6(1). https://doi.org/10.1038/s43247-025-02167-7

Piccolo, A., & Drosos, M. (2025). The essential role of humified organic matter in preserving soil health. Chemical and Biological Technologies in Agriculture, 12(1). https://doi.org/10.1186/s40538-025-00730-0

Rust, C., Asmal, L., O’Hare, M., Pretorius, E., Emsley, R., Seedat, S., & Hemmings, S. (2025). Investigating the gut microbiome in schizophrenia cases versus controls: South Africa’s version. Neurogenetics, 26(1). https://doi.org/10.1007/s10048-025-00816-9

Santiso-Bellón, C., Randazzo, W., Carmona-Vicente, N., Peña-Gil, N., Cárcamo-Calvo, R., Lopez-Navarro, S., Navarro-Lleó, N., Yebra, M. J., Monedero, V., Buesa, J., Gozalbo-Rovira, R., & Rodríguez-Díaz, J. (2025). Rhodococcus spp. interacts with human norovirus in clinical samples and impairs its replication on human intestinal enteroids. Gut Microbes, 17(1), 2469716. https://doi.org/10.1080/19490976.2025.2469716

Schaible, P., Henschel, J., & Erny, D. (2025). How the gut microbiota impacts neurodegenerative diseases by modulating CNS immune cells. Journal of Neuroinflammation , 22(1). https://doi.org/10.1186/s12974-025-03371-0

Schlicht, K., Pape, L., Rohmann, N., Knappe, C., Epe, J., Geisler, C., Pohlschneider, D., Brodesser, S., Kruse, L., Rohlfing, M.-E., Hartmann, K., Türk, K., Marquardt, J., Beckmann, J., von Schönfels, W., Beckmann, A., Wietzke-Braun, P., Schulte, D. M., Hollstein, T., … Laudes, M. (2025). Prediabetes and type 2 diabetes but not obesity are associated with alterations in bile acid related gut microbe-microbe and gut microbe-host community metabolism. Gut Microbes, 17(1), 2474143. https://doi.org/10.1080/19490976.2025.2474143

Sung, M., Kim, B. E., & Leung, D. Y. M. (2025). Skin Infections in Atopic Dermatitis: Treatment Challenges. Current Treatment Options in Allergy, 12(1). https://doi.org/10.1007/s40521-025-00381-4

Tan, Y., Matsuzaki, J., Saito, Y., & Suzuki, H. (2025). Environmental factors in gastric carcinogenesis and preventive intervention strategies. Genes and Environment, 47(1). https://doi.org/10.1186/s41021-025-00328-w

Wang, X., Hu, M., Wu, W., Lou, X., Gao, R., Ma, T., Dheen, S. T., Cheng, J., Xiong, J., Chen, X., & Wang, J. (2025). Indole derivatives ameliorated the methamphetamine-induced depression and anxiety via aryl hydrocarbon receptor along “microbiota-brain” axis. Gut Microbes, 17(1), 2470386. https://doi.org/10.1080/19490976.2025.2470386

Yao, J., Ning, B., & Ding, J. (2025). The gut microbiota: an emerging modulator of drug resistance in hepatocellular carcinoma. Gut Microbes, 17(1), 2473504. https://doi.org/10.1080/19490976.2025.2473504

Yu, J., Liu, C., Wang, D., Wan, P., Cheng, L., & Yan, X. (2025). Integrated microbiome and metabolome analysis reveals altered gut microbial communities and metabolite profiles in dairy cows with subclinical mastitis. BMC Microbiology, 25(1). https://doi.org/10.1186/s12866-025-03810-1

Zou, B., Liu, S., Dong, C., Shen, H., Lv, Y., He, J., Li, X., Ruan, M., Huang, Z., & Shu, S. (2025). Fecal microbiota transplantation restores gut microbiota diversity in children with active Crohn’s disease: a prospective trial. Journal of Translational Medicine, 23(1). https://doi.org/10.1186/s12967-024-05832-1

Authors

Muhammad Hazmi
mhazmi.hazmi@gmail.com (Primary Contact)
Seo Jiwon
Ruby Kingh
Hazmi, M., Jiwon, S., & Kingh, R. (2025). Utilization of the Microbiome to Increase Food Security Throught Sustainable Biotechnology. Scientechno: Journal of Science and Technology, 4(1), 32–39. https://doi.org/10.70177/scientechno.v4i1.2116

Article Details

No Related Submission Found